mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* 测试 * delete test * add yolov7-face * fit vision.h * add yolov7-face test * fit: yolov7-face infer.cc * fit * fit Yolov7-face Cmakelist * fit yolov7Face.cc * add yolov7-face pybind * add yolov7-face python infer * feat yolov7-face pybind * feat yolov7-face format error * feat yolov7face_pybind error * feat add yolov7face-pybind to facedet-pybind * same as before * same sa before * feat __init__.py * add yolov7face.py * feat yolov7face.h ignore "," * feat .py * fit yolov7face.py * add yolov7face test teadme file * add test file * fit postprocess * delete remain annotation * fit preview * fit yolov7facepreprocessor * fomat code * fomat code * fomat code * fit format error and confthreshold and nmsthres * fit confthreshold and nmsthres * fit test-yolov7-face * fit test_yolov7face * fit review * fit ci error Co-authored-by: kongbohua <kongbh2022@stu.pku.edu.cn> Co-authored-by: CoolCola <49013063+kongbohua@users.noreply.github.com>
YOLOv7Face C++部署示例
本目录下提供infer.cc
快速完成YOLOv7Face在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- 根据开发环境,下载预编译部署库和samples代码,参考FastDeploy预编译库
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.2
make -j
#下载官方转换好的YOLOv7Face模型文件和测试图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx
#使用yolov7-tiny-face.onnx模型
# CPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 2
#使用yolov7-lite-e.onnx模型
# CPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 2
运行完成可视化结果如下图所示

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
YOLOv7Face C++接口
YOLOv7Face类
fastdeploy::vision::facedet::YOLOv7Face(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
YOLOv7Face模型加载和初始化,其中model_file为导出的ONNX模型格式。
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为ONNX格式
Predict函数
YOLOv7Face::Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold = 0.3, float nms_iou_threshold = 0.5)
模型预测接口,输入图像直接输出检测结果。
参数
- im: 输入图像,注意需为HWC,BGR格式
- result: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考视觉模型预测结果
- conf_threshold: 检测框置信度过滤阈值
- nms_iou_threshold: NMS处理过程中iou阈值