Files
FastDeploy/tests/utils/test_config.py
Yonghua Li 0c8c6369ed [Feature] [PD Disaggregation] simplify configuration for pd-disaggregated deployment, and refactor post-init and usage for all ports (#5415)
* [feat] simplify configuration for pd-disaggregated deployment, and refactor post-init and usage for all ports

* [fix] fix some bugs

* [fix] fix rdma port for cache manager/messager

* [fix] temporarily cancel port availability check to see if it can pass ci test

* [feat] simplify args for multi api server

* [fix] fix dp

* [fix] fix port for xpu

* [fix] add tests for ports post processing & fix ci

* [test] fix test_multi_api_server

* [fix] fix rdma_comm_ports args for multi_api_server

* [fix] fix test_common_engine

* [fix] fix test_cache_transfer_manager

* [chore] automatically setting FD_ENABLE_MULTI_API_SERVER

* [fix] avoid api server from creating engine_args twice

* [fix] fix test_run_batch

* [fix] fix test_metrics

* [fix] fix splitwise connector init

* [test] add test_rdma_transfer and test_expert_service

* [fix] fix code syntax

* [fix] fix test_rdma_transfer and build wheel with rdma script
2025-12-17 15:50:42 +08:00

192 lines
7.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import random
import unittest
from unittest.mock import Mock
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.utils import get_host_ip
class TestConfig(unittest.TestCase):
def test_fdconfig_nnode(self):
parallel_config = ParallelConfig({"tensor_parallel_size": 16, "expert_parallel_size": 1})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips=[get_host_ip(), "0.0.0.0"],
test_mode=True,
)
assert fd_config.nnode == 2
assert fd_config.is_master is True
def test_fdconfig_ips(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
assert fd_config.master_ip == "0.0.0.0"
def test_fdconfig_max_num_tokens(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
cache_config.enable_chunked_prefill = True
scheduler_config = SchedulerConfig({})
model_config: Mock = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 2048
cache_config.enable_chunked_prefill = False
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 8192
def test_fdconfig_init_cache(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
scheduler_config.splitwise_role = "prefill"
model_config: Mock = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
test_mode=True,
)
fd_config.init_cache_info()
assert fd_config.register_info is not None
def test_fdconfig_postprocess_ports(self):
data_parallel_size = 4
tensor_parallel_size = 2
local_data_parallel_id = random.randint(0, data_parallel_size - 1)
engine_worker_queue_ports = [random.randint(8000, 65535) for _ in range(data_parallel_size)]
cache_queue_ports = [random.randint(8000, 65535) for _ in range(data_parallel_size)]
pd_comm_ports = [random.randint(8000, 65535) for _ in range(data_parallel_size)]
rdma_comm_ports = [random.randint(8000, 65535) for _ in range(data_parallel_size * tensor_parallel_size)]
parallel_config = ParallelConfig(
{
"engine_worker_queue_port": ",".join(map(str, engine_worker_queue_ports)),
"data_parallel_size": data_parallel_size,
"tensor_parallel_size": tensor_parallel_size,
"local_data_parallel_id": local_data_parallel_id,
}
)
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig(
{
"cache_queue_port": ",".join(map(str, cache_queue_ports)),
"pd_comm_port": ",".join(map(str, pd_comm_ports)),
"rdma_comm_ports": ",".join(map(str, rdma_comm_ports)),
}
)
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config: Mock = Mock()
model_config.max_model_len = 512
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
assert (
fd_config.parallel_config.local_engine_worker_queue_port
== engine_worker_queue_ports[local_data_parallel_id]
)
assert fd_config.cache_config.local_cache_queue_port == cache_queue_ports[local_data_parallel_id]
assert fd_config.cache_config.local_pd_comm_port == pd_comm_ports[local_data_parallel_id]
assert (
fd_config.cache_config.local_rdma_comm_ports
== rdma_comm_ports[
local_data_parallel_id * tensor_parallel_size : (local_data_parallel_id + 1) * tensor_parallel_size
]
)
if __name__ == "__main__":
unittest.main()