Files
FastDeploy/tests/operators/test_speculate_update.py
co63oc ef4a1aa2da 【Hackathon 9th No.61、65】add test_draft_model_update (#3940)
* add draft_model_update test

* fix

* fix

* fix

* fix

* fix
2025-09-15 11:19:50 +08:00

166 lines
5.3 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import speculate_update
def speculate_update_np(
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
accept_tokens,
accept_num,
stop_flags,
seq_lens_this_time,
is_block_step,
stop_nums,
):
stop_sum = 0
real_bsz = seq_lens_this_time.shape[0]
max_bsz = stop_flags.shape[0]
max_draft_tokens = draft_tokens.shape[1]
for bid in range(max_bsz):
stop_flag_now_int = 0
inactive = bid >= real_bsz
block_step = (not inactive) and is_block_step[bid]
if (not block_step) and (not inactive):
if stop_flags[bid]:
stop_flag_now_int = 1
if seq_lens_encoder[bid] == 0:
seq_lens_decoder[bid] += accept_num[bid]
if (seq_lens_encoder[bid] == 0) and (seq_lens_this_time[bid] > 1):
cur_len = actual_draft_token_nums[bid]
if accept_num[bid] - 1 == cur_len:
if cur_len + 2 <= max_draft_tokens - 1:
cur_len += 2
elif cur_len + 1 <= max_draft_tokens - 1:
cur_len += 1
else:
cur_len = max_draft_tokens - 1
else:
cur_len = max(1, cur_len - 1)
actual_draft_token_nums[bid] = cur_len
if seq_lens_encoder[bid] != 0:
seq_lens_decoder[bid] += seq_lens_encoder[bid]
seq_lens_encoder[bid] = 0
draft_tokens[bid, 0] = accept_tokens[bid, accept_num[bid] - 1]
if stop_flag_now_int:
seq_lens_decoder[bid] = 0
elif inactive:
stop_flag_now_int = 1
stop_sum += stop_flag_now_int
not_need_stop[0] = stop_sum < stop_nums[0]
return (
seq_lens_encoder,
seq_lens_decoder,
not_need_stop,
draft_tokens,
actual_draft_token_nums,
)
def gen_inputs(
max_bsz=512,
max_draft_tokens=16,
real_bsz=123,
seed=2022,
):
rng = np.random.default_rng(seed)
seq_lens_encoder = rng.integers(0, 3, size=max_bsz, dtype=np.int32)
seq_lens_decoder = rng.integers(0, 20, size=max_bsz, dtype=np.int32)
not_need_stop = rng.integers(0, 1, size=1, dtype=np.bool_)
draft_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
actual_draft_nums = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
accept_tokens = rng.integers(0, 1000, size=(max_bsz, max_draft_tokens), dtype=np.int64)
accept_num = rng.integers(1, max_draft_tokens, size=max_bsz, dtype=np.int32)
stop_flags = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
is_block_step = rng.integers(0, 2, size=max_bsz, dtype=np.bool_)
stop_nums = np.array([5], dtype=np.int64)
seq_lens_this_time = rng.integers(1, max_draft_tokens, size=real_bsz, dtype=np.int32)
return {
"seq_lens_encoder": seq_lens_encoder,
"seq_lens_decoder": seq_lens_decoder,
"not_need_stop": not_need_stop,
"draft_tokens": draft_tokens,
"actual_draft_token_nums": actual_draft_nums,
"accept_tokens": accept_tokens,
"accept_num": accept_num,
"stop_flags": stop_flags,
"seq_lens_this_time": seq_lens_this_time,
"is_block_step": is_block_step,
"stop_nums": stop_nums,
}
class TestSpeculateUpdate(unittest.TestCase):
def test_speculate_update(self):
inputs = gen_inputs(max_bsz=512, max_draft_tokens=32, real_bsz=201)
paddle_inputs = {}
for k, v in inputs.items():
paddle_inputs[k] = paddle.to_tensor(v)
paddle_inputs["not_need_stop"] = paddle_inputs["not_need_stop"].to(device=paddle.CPUPlace())
np_inputs = {
k: (paddle_inputs[k].numpy().copy() if isinstance(paddle_inputs[k], paddle.Tensor) else paddle_inputs[k])
for k in paddle_inputs
}
speculate_update(*(paddle_inputs.values()))
pd_tensors = (
paddle_inputs["seq_lens_encoder"],
paddle_inputs["seq_lens_decoder"],
paddle_inputs["not_need_stop"],
paddle_inputs["draft_tokens"],
paddle_inputs["actual_draft_token_nums"],
)
out_np = speculate_update_np(**np_inputs)
names = [
"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",
"draft_tokens",
"actual_draft_token_nums",
]
for name, pd_val, np_val in zip(names, pd_tensors, out_np):
np.testing.assert_allclose(pd_val.numpy(), np_val)
if __name__ == "__main__":
unittest.main()