mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
172 lines
5.9 KiB
Python
172 lines
5.9 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
|
|
from fastdeploy.model_executor.ops.gpu import per_token_quant, per_token_quant_padding
|
|
|
|
paddle.seed(2024)
|
|
|
|
|
|
def per_token_quant_paddle(input_tensor, block_size):
|
|
MAX_VALUE = 448.0
|
|
epsilon = 1e-10
|
|
|
|
input_shape = input_tensor.shape
|
|
token_num = input_shape[0]
|
|
hidden_size = input_shape[1]
|
|
|
|
# According to https://github.com/PaddlePaddle/FastDeploy/pull/3659
|
|
padding_size = (block_size - hidden_size % block_size) % block_size
|
|
|
|
padded_input = input_tensor
|
|
if padding_size > 0:
|
|
padded_input = F.pad(input_tensor, pad=[0, padding_size], mode="constant", value=0.0)
|
|
|
|
padded_hidden_size = hidden_size + padding_size
|
|
hidden_size_scale = padded_hidden_size // block_size
|
|
|
|
reshaped_input = paddle.reshape(padded_input, [token_num, hidden_size_scale, block_size]).astype("float32")
|
|
|
|
max_abs_val = paddle.max(paddle.abs(reshaped_input), axis=-1, keepdim=True)
|
|
max_abs_val = paddle.clip(max_abs_val, min=epsilon)
|
|
scale = max_abs_val / MAX_VALUE
|
|
|
|
quanted_value = reshaped_input / scale
|
|
|
|
quanted_x_padded_reshaped = quanted_value.to(paddle.float8_e4m3fn)
|
|
quanted_x_padded = paddle.reshape(quanted_x_padded_reshaped, [token_num, padded_hidden_size])
|
|
|
|
quanted_x = quanted_x_padded[:, :hidden_size]
|
|
|
|
quanted_scale = paddle.squeeze(scale, axis=-1)
|
|
|
|
return quanted_x, quanted_scale
|
|
|
|
|
|
def per_token_quant_padding_paddle(input_tensor, block_size, dtype):
|
|
quanted_x, intermediate_scale = per_token_quant_paddle(input_tensor, block_size)
|
|
token_num = input_tensor.shape[0]
|
|
|
|
tma_alignment_elements = 4
|
|
padded_token_num = ((token_num + tma_alignment_elements - 1) // tma_alignment_elements) * tma_alignment_elements
|
|
|
|
hidden_size_scale = intermediate_scale.shape[1]
|
|
padded_scale = paddle.zeros([padded_token_num, hidden_size_scale], dtype="float32")
|
|
|
|
padded_scale[:token_num, :] = intermediate_scale
|
|
|
|
return quanted_x, padded_scale
|
|
|
|
|
|
class TestPerTokenQuant(unittest.TestCase):
|
|
def get_input(self, shape, dtype):
|
|
return paddle.randn(shape=shape, dtype=dtype)
|
|
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.float16
|
|
self.token_num = 4
|
|
self.hidden_size = 500
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
def test_per_token_quant(self):
|
|
paddle_output, paddle_output_scale = per_token_quant_paddle(self.input_tensor, self.block_size)
|
|
output, output_scale = per_token_quant(self.input_tensor, self.block_size)
|
|
|
|
np.testing.assert_allclose(paddle_output_scale.numpy(), output_scale.numpy(), rtol=1e-6)
|
|
|
|
output_rel_diff = paddle.mean(
|
|
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
|
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)))
|
|
|
|
assert output_rel_diff < 0.001
|
|
|
|
|
|
class TestPerTokenQuantCase1(TestPerTokenQuant):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.float16
|
|
self.token_num = 4
|
|
self.hidden_size = 128 * 6
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
class TestPerTokenQuantCase2(TestPerTokenQuant):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.bfloat16
|
|
self.token_num = 4
|
|
self.hidden_size = 500
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
class TestPerTokenQuantCase3(TestPerTokenQuant):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.bfloat16
|
|
self.token_num = 4
|
|
self.hidden_size = 128 * 6
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
class TestPerTokenQuantPadding(TestPerTokenQuant):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.float16
|
|
self.token_num = 6
|
|
self.hidden_size = 128 * 4
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
def test_per_token_quant_padding(self):
|
|
paddle_output, paddle_output_scale = per_token_quant_padding_paddle(
|
|
self.input_tensor, self.block_size, self.dtype
|
|
)
|
|
output, output_scale = per_token_quant_padding(self.input_tensor, self.block_size)
|
|
|
|
self.assertEqual(paddle_output_scale.shape, output_scale.shape)
|
|
np.testing.assert_allclose(
|
|
paddle_output_scale[0 : self.token_num].numpy(),
|
|
output_scale[0 : self.token_num].numpy(),
|
|
rtol=1e-5,
|
|
atol=1e-5,
|
|
)
|
|
|
|
output_rel_diff = paddle.mean(
|
|
paddle.abs(output.to(paddle.float32) - paddle_output.to(paddle.float32))
|
|
) / paddle.mean(paddle.abs(paddle_output.to(paddle.float32)) + 1e-9)
|
|
|
|
assert output_rel_diff < 0.001
|
|
|
|
|
|
class TestPerTokenQuantPaddingCase1(TestPerTokenQuantPadding):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.float16
|
|
self.token_num = 8
|
|
self.hidden_size = 128 * 4
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
class TestPerTokenQuantPaddingCase2(TestPerTokenQuantPadding):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.bfloat16
|
|
self.token_num = 6
|
|
self.hidden_size = 128 * 4
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
class TestPerTokenQuantPaddingCase3(TestPerTokenQuantPadding):
|
|
def setUp(self) -> None:
|
|
self.dtype = paddle.bfloat16
|
|
self.token_num = 8
|
|
self.hidden_size = 128 * 4
|
|
self.block_size = 128
|
|
self.input_tensor = self.get_input(shape=[self.token_num, self.hidden_size], dtype=self.dtype)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|