mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
111 lines
4.1 KiB
Python
111 lines
4.1 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License")
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import eagle_get_self_hidden_states
|
|
|
|
|
|
def computeOrderKernel(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, output_token_num, bsz):
|
|
in_offset = 0
|
|
out_offset = 0
|
|
for i in range(bsz):
|
|
cur_seq_lens_this_time = seq_lens_this_time[i]
|
|
cur_last_seq_lens_this_time = last_seq_lens_this_time[i]
|
|
# 1. encoder
|
|
if step_idx[i] == 1 and cur_seq_lens_this_time > 0:
|
|
in_offset += 1
|
|
src_map[out_offset] = in_offset - 1
|
|
out_offset += 1
|
|
# 2. decoder
|
|
elif cur_seq_lens_this_time > 0: # =1
|
|
in_offset += cur_last_seq_lens_this_time
|
|
src_map[out_offset] = in_offset - 1
|
|
out_offset += 1
|
|
# 3. stop
|
|
else:
|
|
# first token end
|
|
if step_idx[i] == 1:
|
|
in_offset += 1 if cur_last_seq_lens_this_time > 0 else 0
|
|
# normal end
|
|
else:
|
|
in_offset += cur_last_seq_lens_this_time
|
|
output_token_num[0] = out_offset
|
|
|
|
|
|
def rebuildSelfHiddenStatesKernel(input, src_map, output, dim_embed, elem_cnt):
|
|
for elem_id in range(elem_cnt):
|
|
output_token_idx = int(elem_id / dim_embed)
|
|
input_token_idx = src_map[output_token_idx]
|
|
offset = elem_id % dim_embed
|
|
output[output_token_idx][offset] = input[input_token_idx][offset]
|
|
|
|
|
|
def eagle_get_self_hidden_states_ref(input, last_seq_lens_this_time, seq_lens_this_time, step_idx):
|
|
input_token_num = input.shape[0]
|
|
dim_embed = input.shape[1]
|
|
bsz = seq_lens_this_time.shape[0]
|
|
src_map = paddle.full([input_token_num], -1, seq_lens_this_time.dtype)
|
|
output_token_num = paddle.full([1], 0, seq_lens_this_time.dtype)
|
|
|
|
computeOrderKernel(last_seq_lens_this_time, seq_lens_this_time, step_idx, src_map, output_token_num, bsz)
|
|
|
|
output_token_num_cpu = output_token_num[0]
|
|
out = paddle.full([output_token_num_cpu, dim_embed], -1, input.dtype)
|
|
|
|
elem_cnt = output_token_num_cpu * dim_embed
|
|
rebuildSelfHiddenStatesKernel(input, src_map, out, dim_embed, elem_cnt)
|
|
|
|
return out
|
|
|
|
|
|
class TestEagleGetSelfHiddenStates(unittest.TestCase):
|
|
def test_eagle_get_self_hidden_states(self):
|
|
paddle.seed(2023)
|
|
np.random.seed(2023)
|
|
bs = 2
|
|
input_token_num = 10
|
|
dim_embed = 512
|
|
|
|
last_seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32)
|
|
seq_lens_this_time = np.random.randint(0, input_token_num // bs, bs, dtype=np.int32)
|
|
step_idx = np.arange(0, bs, dtype=np.int32)
|
|
|
|
last_seq_lens_this_time_tensor = paddle.to_tensor(last_seq_lens_this_time, dtype=paddle.int32)
|
|
seq_lens_this_time_tensor = paddle.to_tensor(seq_lens_this_time, dtype=paddle.int32)
|
|
step_idx_tensor = paddle.to_tensor(step_idx, dtype=paddle.int64)
|
|
|
|
input = np.random.randint(0, 10, (input_token_num, dim_embed), dtype=np.int32)
|
|
input_tensor = paddle.to_tensor(input, dtype=paddle.float16)
|
|
out = eagle_get_self_hidden_states(
|
|
input_tensor,
|
|
last_seq_lens_this_time_tensor,
|
|
seq_lens_this_time_tensor,
|
|
step_idx_tensor,
|
|
)
|
|
out_ref = eagle_get_self_hidden_states_ref(
|
|
input_tensor,
|
|
last_seq_lens_this_time_tensor,
|
|
seq_lens_this_time_tensor,
|
|
step_idx_tensor,
|
|
)
|
|
np.testing.assert_allclose(out.numpy(), out_ref.numpy())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|