Files
FastDeploy/examples/vision/tracking/pptracking/cpp
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..
2022-11-21 10:58:28 +08:00

English | 简体中文

PP-Tracking C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of PP-Tracking on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation

Taking the PP-Tracking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the`FastDeploy Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# Download PP-Tracking model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4


# CPU inference
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 0
# GPU inference
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 1
# TensorRT Inference on GPU
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 2

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

PP-Tracking C++ Interface

PPTracking Class

fastdeploy::vision::tracking::PPTracking(
        const string& model_file,
        const string& params_file = "",
        const string& config_file,
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::PADDLE)

PP-Tracking model loading and initialization, among which model_file is the exported Paddle model format.

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • config_file(str): Inference deployment configuration file
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. Paddle format by default

Predict Function

PPTracking::Predict(cv::Mat* im, MOTResult* result)

Model prediction interface. Input images and output detection results.

Parameter

  • im: Input images in HWC or BGR format
  • result: Detection results, including detection box, tracking id, confidence of each box, and object class id. Refer to visual model prediction results for the description of MOTResult