Files
FastDeploy/examples/vision/classification/paddleclas/quantize/python
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..

English | 简体中文

PaddleClas Quantitative Model Python Deployment Example

infer.py in this directory can help you quickly complete the inference acceleration of PaddleClas quantization model deployment on CPU/GPU.

Deployment Preparations

FastDeploy Environment Preparations

Quantized Model Preparations

    1. You can directly use the quantized model provided by FastDeploy for deployment.
    1. You can use one-click automatical compression tool provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.(Note: The quantized classification model still needs the inference_cls.yaml file in the FP32 model folder. Self-quantized model folder does not contain this yaml file, you can copy it from the FP32 model folder to the quantized model folder.)

Take the Quantized ResNet50_Vd Model as an example for Deployment

# Download sample deployment code.
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/classification/paddleclas/quantize/python

# Download the ResNet50_Vd quantized model and test images provided by FastDeloy.
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50_vd_ptq.tar
tar -xvf resnet50_vd_ptq.tar
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# Use ONNX Runtime inference quantization model on CPU.
python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device cpu --backend ort
# Use TensorRT inference quantization model on GPU.
python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device gpu --backend trt
# Use Paddle-TensorRT inference quantization model on GPU.
python infer.py --model resnet50_vd_ptq --image ILSVRC2012_val_00000010.jpeg --device gpu --backend pptrt