Files
FastDeploy/fastdeploy/model_executor/guided_decoding/base_guided_decoding.py
Yuanle Liu cbce94a00e rename ernie_xxx to ernie4_5_xxx (#3621)
* rename ernie_xxx to ernie4_5_xxx

* ci fix
2025-08-26 19:29:27 +08:00

347 lines
11 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import traceback
from concurrent.futures import ThreadPoolExecutor
from fastdeploy.config import ErnieArchitectures, FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import llm_logger
class LogitsProcessorBase:
"""
Abstract base class for logits processors in guided decoding.
This class defines the interface for logits processors that modify token probabilities
during generation to enforce schema constraints. Subclasses should implement all
abstract methods to provide specific constraint enforcement logic.
Attributes:
None (all state should be managed by subclasses)
"""
def __init__(self):
pass
def fill_token_bitmask(self, token_bitmask, idx):
"""
Fill the vocabulary mask.
Args:
token_bitmask (tensor): The vocabulary mask tensor.
idx (tensor): The tensor index.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def apply_token_mask(self, logits, token_bitmask):
"""
Apply the vocabulary mask to logits.
Args:
logits (tensor): The logits tensor.
token_bitmask (tensor): The vocabulary mask tensor.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def allocate_token_bitmask(self, batch_size, vocab_size):
"""
Allocate a token bitmask for the given batch size and vocabulary size.
Args:
batch_size (int): The batch size.
vocab_size (int): The vocabulary size.
Returns:
tensor: The allocated token bitmask.
"""
raise NotImplementedError
def accept_token(self, token):
"""
Accept tokens based on the token bitmask
Args:
token (int): The token id.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def is_terminated(self):
"""
Check if the processor has been terminated.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def reset(self):
"""
Reset the matcher state.
"""
raise NotImplementedError
def copy(self):
"""
Create a copy of the backend instance.
Returns:
BackendBase: A copy of the backend instance.
"""
raise NotImplementedError
class BackendBase:
"""
Abstract base class for guided decoding backends.
This class provides the core infrastructure for managing schema processors and
their caching. It handles:
- Processor creation and caching
- Tokenizer initialization
- Thread pool management for async operations
Attributes:
cache (dict): Cache of schema processors
fd_config (FDConfig): FastDeploy configuration
executor (ThreadPoolExecutor): Thread pool for async operations
max_cache_size (int): Maximum number of processors to cache
hf_tokenizer: HuggingFace tokenizer instance
"""
def __init__(self, fd_config: FDConfig):
self.cache = {}
self.fd_config = fd_config
self.executor = ThreadPoolExecutor()
self.max_cache_size = 2048
self.hf_tokenizer = self._get_tokenizer_hf()
def _create_processor(self):
"""
Create a specific logits processor instance.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def _json_processor(self, schemata):
"""
Process JSON schemata.
Args:
schemata (str): The schemata string.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def _regex_processor(self, schemata):
"""
Process regular expression schemata.
Args:
schemata (str): The schemata string.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def _grammar_processor(self, schemata):
"""
Process grammar schemata.
Args:
schemata (str): The schemata string.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def _structural_tag_processor(self, schemata):
"""
Process structural tag schemata.
Args:
schemata (str): The schemata string.
Raises:
NotImplementedError: This method should be implemented in subclasses.
"""
raise NotImplementedError
def _unsupported_processor_type(self, key_type, schemata):
"""
Process unsupported type.
Args:
key_type (str): The key type string.
schemata (str): The schemata string.
"""
raise Exception(f"Unsupported processor type {key_type}.")
def _init_logits_processor(self, schemata_key: tuple[str, str]) -> LogitsProcessorBase:
"""
init logits processor by type and schemata.
Args:
schemata_key (tuple[str, str]): Tuple containing processor type and schema string
Returns:
LogitsProcessorBase: Initialized logits processor instance
Raises:
ValueError: If processor type is not supported
"""
key_type, schemata = schemata_key
if key_type == "json":
return self._json_processor(schemata)
elif key_type == "regex":
return self._regex_processor(schemata)
elif key_type == "grammar":
return self._grammar_processor(schemata)
elif key_type == "structural_tag":
return self._structural_tag_processor(schemata)
else:
llm_logger.error(f"Unsupported processor type {key_type}.")
return None
def get_logits_processor(self, schemata_key: tuple[str, str]) -> tuple[LogitsProcessorBase, bool]:
"""
get logits processor by key from cache or create new one.
Args:
schemata_key (tuple[str, str]): Tuple containing processor type and schema string
Returns:
tuple[LogitsProcessorBase, bool]: Tuple containing:
- LogitsProcessorBase: The logits processor instance
- bool: True if processor was from cache, False if newly created
"""
value = self.cache.get(schemata_key, None)
if value:
return value.copy(), True
value = self.executor.submit(self._init_logits_processor, schemata_key)
return value, False
def _get_tokenizer_hf(self):
"""
Initialize and return a HuggingFace tokenizer instance.
This method handles special cases for Ernie models and falls back to standard
AutoTokenizer for other models. It also ensures fast tokenizer is used when possible.
Returns:
Tokenizer: Initialized HuggingFace tokenizer instance
Raises:
Exception: If tokenizer initialization fails
"""
try:
architectures = self.fd_config.model_config.architectures
if not ErnieArchitectures.contains_ernie_arch(architectures):
from transformers import AutoTokenizer, PreTrainedTokenizerFast
tokenizer = AutoTokenizer.from_pretrained(
self.fd_config.model_config.model,
use_fast=False,
)
if not isinstance(tokenizer, PreTrainedTokenizerFast):
tokenizer = PreTrainedTokenizerFast(__slow_tokenizer=tokenizer)
else:
from fastdeploy.model_executor.guided_decoding.ernie_tokenizer import (
Ernie4_5Tokenizer,
)
vocab_file_names = [
"tokenizer.model",
"spm.model",
"ernie_token_100k.model",
]
for i in range(len(vocab_file_names)):
if os.path.exists(
os.path.join(
self.fd_config.model_config.model,
vocab_file_names[i],
)
):
Ernie4_5Tokenizer.vocab_files_names["vocab_file"] = vocab_file_names[i]
break
tokenizer = Ernie4_5Tokenizer.from_pretrained(self.fd_config.model_config.model)
return tokenizer
except Exception as e:
raise Exception(f"Fail to initialize hf tokenizer: {e}, {str(traceback.format_exc())}")
def add_cache(self, schemata_key: tuple[str, str], processor: LogitsProcessorBase) -> None:
"""
add logits processor to cache.
Args:
schemata_key (tuple[str, str]): Tuple containing processor type and schema string
processor (LogitsProcessorBase): Logits processor instance to cache
Returns:
None: No return value
"""
if len(self.cache) >= self.max_cache_size:
return
self.cache[schemata_key] = processor.copy()
class BaseChecker:
"""
Abstract base class for schema checkers.
This class defines the interface for validating and formatting schemas
before they are used by logits processors. Subclasses should implement
schema-specific validation and formatting logic.
Attributes:
None (all state should be managed by subclasses)
"""
def __init__(self):
pass
def schema_format(self, request: Request):
"""
format schema to backend specific format.
Args:
request (Request): request object.
Returns:
request (Request): request object with formatted schema.
"""
raise NotImplementedError