Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov8/yolov8.h
WJJ1995 02bd22422e [Model] Support YOLOv8 (#1137)
* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-16 11:24:23 +08:00

77 lines
3.0 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/contrib/yolov8/preprocessor.h"
#include "fastdeploy/vision/detection/contrib/yolov8/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief YOLOv8 model object used when to load a YOLOv8 model exported by YOLOv8.
*/
class FASTDEPLOY_DECL YOLOv8 : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov8.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv8(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "yolov8"; }
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, DetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
/// Get preprocessor reference of YOLOv8
virtual YOLOv8Preprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv8
virtual YOLOv8Postprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
YOLOv8Preprocessor preprocessor_;
YOLOv8Postprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy