mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
144 lines
5.7 KiB
C++
Executable File
144 lines
5.7 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/yolov8/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
YOLOv8Postprocessor::YOLOv8Postprocessor() {
|
|
conf_threshold_ = 0.25;
|
|
nms_threshold_ = 0.5;
|
|
multi_label_ = true;
|
|
max_wh_ = 7680.0;
|
|
}
|
|
|
|
bool YOLOv8Postprocessor::Run(
|
|
const std::vector<FDTensor>& tensors, std::vector<DetectionResult>* results,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
int batch = tensors[0].shape[0];
|
|
// transpose
|
|
std::vector<int64_t> dim{0, 2, 1};
|
|
FDTensor tensor_transpose;
|
|
function::Transpose(tensors[0], &tensor_transpose, dim);
|
|
|
|
results->resize(batch);
|
|
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
(*results)[bs].Clear();
|
|
if (multi_label_) {
|
|
(*results)[bs].Reserve(tensor_transpose.shape[1] *
|
|
(tensor_transpose.shape[2] - 4));
|
|
} else {
|
|
(*results)[bs].Reserve(tensor_transpose.shape[1]);
|
|
}
|
|
if (tensor_transpose.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
const float* data =
|
|
reinterpret_cast<const float*>(tensor_transpose.Data()) +
|
|
bs * tensor_transpose.shape[1] * tensor_transpose.shape[2];
|
|
for (size_t i = 0; i < tensor_transpose.shape[1]; ++i) {
|
|
int s = i * tensor_transpose.shape[2];
|
|
if (multi_label_) {
|
|
for (size_t j = 4; j < tensor_transpose.shape[2]; ++j) {
|
|
float confidence = data[s + j];
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
int32_t label_id = j - 4;
|
|
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
|
|
(*results)[bs].label_ids.push_back(label_id);
|
|
(*results)[bs].scores.push_back(confidence);
|
|
}
|
|
} else {
|
|
const float* max_class_score = std::max_element(
|
|
data + s + 4, data + s + tensor_transpose.shape[2]);
|
|
float confidence = *max_class_score;
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
int32_t label_id = std::distance(data + s + 4, max_class_score);
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh_,
|
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh_,
|
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh_});
|
|
(*results)[bs].label_ids.push_back(label_id);
|
|
(*results)[bs].scores.push_back(confidence);
|
|
}
|
|
}
|
|
|
|
if ((*results)[bs].boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
|
|
utils::NMS(&((*results)[bs]), nms_threshold_);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = ims_info[bs].find("output_shape");
|
|
auto iter_ipt = ims_info[bs].find("input_shape");
|
|
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
float pad_h = (out_h - ipt_h * scale) / 2;
|
|
float pad_w = (out_w - ipt_w * scale) / 2;
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
int32_t label_id = ((*results)[bs].label_ids)[i];
|
|
// clip box
|
|
(*results)[bs].boxes[i][0] =
|
|
(*results)[bs].boxes[i][0] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][1] =
|
|
(*results)[bs].boxes[i][1] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][2] =
|
|
(*results)[bs].boxes[i][2] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][3] =
|
|
(*results)[bs].boxes[i][3] - max_wh_ * label_id;
|
|
(*results)[bs].boxes[i][0] =
|
|
std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][1] =
|
|
std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][2] =
|
|
std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][3] =
|
|
std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w);
|
|
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h);
|
|
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
|
|
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|