mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			80 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| #ifdef WIN32
 | |
| const char sep = '\\';
 | |
| #else
 | |
| const char sep = '/';
 | |
| #endif
 | |
| 
 | |
| void InitAndInfer(const std::string& model_dir, const std::string& image_file,
 | |
|                   const fastdeploy::RuntimeOption& option) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "inference_cls.yaml";
 | |
| 
 | |
|   auto model = fastdeploy::vision::classification::PaddleClasModel(
 | |
|       model_file, params_file, config_file, option);
 | |
| 
 | |
|   assert(model.Initialized());
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::ClassifyResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
| 
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout << "Usage: infer_demo path/to/quant_model "
 | |
|                  "path/to/image "
 | |
|                  "run_option, "
 | |
|                  "e.g ./infer_demo ./ResNet50_vd_quant ./test.jpeg 0"
 | |
|               << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run on cpu with ORT "
 | |
|                  "backend; 1: run "
 | |
|                  "on gpu with TensorRT backend. "
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   fastdeploy::RuntimeOption option;
 | |
|   int flag = std::atoi(argv[3]);
 | |
| 
 | |
|   if (flag == 0) {
 | |
|     option.UseCpu();
 | |
|     option.UseOrtBackend();
 | |
|   } else if (flag == 1) {
 | |
|     option.UseGpu();
 | |
|     option.UseTrtBackend();
 | |
|     option.SetTrtInputShape("inputs",{1, 3, 224, 224});
 | |
|   } else if (flag == 2) {
 | |
|     option.UseGpu();
 | |
|     option.UseTrtBackend();
 | |
|     option.EnablePaddleToTrt();
 | |
|     }
 | |
| 
 | |
|   std::string model_dir = argv[1];
 | |
|   std::string test_image = argv[2];
 | |
|   InitAndInfer(model_dir, test_image, option);
 | |
|   return 0;
 | |
| }
 | 
