mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 45865c8724
			
		
	
	45865c8724
	
	
	
		
			
			* [FlyCV] Bump up FlyCV -> official release 1.0.0 * XPU to KunlunXin * update * update model link * update doc * update device * update code * useless code Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			203 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
 | |
|               const std::vector<std::string> &image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   cv::Mat face0 = cv::imread(image_file[0]);
 | |
|   cv::Mat face1 = cv::imread(image_file[1]);
 | |
|   cv::Mat face2 = cv::imread(image_file[2]);
 | |
| 
 | |
|   fastdeploy::vision::FaceRecognitionResult res0;
 | |
|   fastdeploy::vision::FaceRecognitionResult res1;
 | |
|   fastdeploy::vision::FaceRecognitionResult res2;
 | |
| 
 | |
|   if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
 | |
|       (!model.Predict(face2, &res2))) {
 | |
|     std::cerr << "Prediction Failed." << std::endl;
 | |
|   }
 | |
| 
 | |
|   std::cout << "Prediction Done!" << std::endl;
 | |
| 
 | |
|   std::cout << "--- [Face 0]:" << res0.Str();
 | |
|   std::cout << "--- [Face 1]:" << res1.Str();
 | |
|   std::cout << "--- [Face 2]:" << res2.Str();
 | |
| 
 | |
|   float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res1.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res2.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   std::cout << "Detect Done! Cosine 01: " << cosine01
 | |
|             << ", Cosine 02:" << cosine02 << std::endl;
 | |
| }
 | |
| 
 | |
| void KunlunXinInfer(const std::string &model_file, const std::string ¶ms_file,
 | |
|               const std::vector<std::string> &image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseKunlunXin();
 | |
|   auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   cv::Mat face0 = cv::imread(image_file[0]);
 | |
|   cv::Mat face1 = cv::imread(image_file[1]);
 | |
|   cv::Mat face2 = cv::imread(image_file[2]);
 | |
| 
 | |
|   fastdeploy::vision::FaceRecognitionResult res0;
 | |
|   fastdeploy::vision::FaceRecognitionResult res1;
 | |
|   fastdeploy::vision::FaceRecognitionResult res2;
 | |
| 
 | |
|   if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
 | |
|       (!model.Predict(face2, &res2))) {
 | |
|     std::cerr << "Prediction Failed." << std::endl;
 | |
|   }
 | |
| 
 | |
|   std::cout << "Prediction Done!" << std::endl;
 | |
| 
 | |
|   std::cout << "--- [Face 0]:" << res0.Str();
 | |
|   std::cout << "--- [Face 1]:" << res1.Str();
 | |
|   std::cout << "--- [Face 2]:" << res2.Str();
 | |
| 
 | |
|   float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res1.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res2.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   std::cout << "Detect Done! Cosine 01: " << cosine01
 | |
|             << ", Cosine 02:" << cosine02 << std::endl;
 | |
| }
 | |
| 
 | |
| void GpuInfer(const std::string &model_file, const std::string ¶ms_file,
 | |
|               const std::vector<std::string> &image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   auto model =
 | |
|       fastdeploy::vision::faceid::AdaFace(model_file, params_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   cv::Mat face0 = cv::imread(image_file[0]);
 | |
|   cv::Mat face1 = cv::imread(image_file[1]);
 | |
|   cv::Mat face2 = cv::imread(image_file[2]);
 | |
| 
 | |
|   fastdeploy::vision::FaceRecognitionResult res0;
 | |
|   fastdeploy::vision::FaceRecognitionResult res1;
 | |
|   fastdeploy::vision::FaceRecognitionResult res2;
 | |
| 
 | |
|   if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
 | |
|       (!model.Predict(face2, &res2))) {
 | |
|     std::cerr << "Prediction Failed." << std::endl;
 | |
|   }
 | |
| 
 | |
|   std::cout << "Prediction Done!" << std::endl;
 | |
| 
 | |
|   std::cout << "--- [Face 0]:" << res0.Str();
 | |
|   std::cout << "--- [Face 1]:" << res1.Str();
 | |
|   std::cout << "--- [Face 2]:" << res2.Str();
 | |
| 
 | |
|   float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res1.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res2.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   std::cout << "Detect Done! Cosine 01: " << cosine01
 | |
|             << ", Cosine 02:" << cosine02 << std::endl;
 | |
| }
 | |
| 
 | |
| void TrtInfer(const std::string &model_file, const std::string ¶ms_file,
 | |
|               const std::vector<std::string> &image_file) {
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   option.UseTrtBackend();
 | |
|   option.SetTrtInputShape("data", {1, 3, 112, 112});
 | |
|   auto model =
 | |
|       fastdeploy::vision::faceid::AdaFace(model_file, params_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   cv::Mat face0 = cv::imread(image_file[0]);
 | |
|   cv::Mat face1 = cv::imread(image_file[1]);
 | |
|   cv::Mat face2 = cv::imread(image_file[2]);
 | |
| 
 | |
|   fastdeploy::vision::FaceRecognitionResult res0;
 | |
|   fastdeploy::vision::FaceRecognitionResult res1;
 | |
|   fastdeploy::vision::FaceRecognitionResult res2;
 | |
| 
 | |
|   if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
 | |
|       (!model.Predict(face2, &res2))) {
 | |
|     std::cerr << "Prediction Failed." << std::endl;
 | |
|   }
 | |
| 
 | |
|   std::cout << "Prediction Done!" << std::endl;
 | |
| 
 | |
|   std::cout << "--- [Face 0]:" << res0.Str();
 | |
|   std::cout << "--- [Face 1]:" << res1.Str();
 | |
|   std::cout << "--- [Face 2]:" << res2.Str();
 | |
| 
 | |
|   float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res1.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
 | |
|       res0.embedding, res2.embedding,
 | |
|       model.GetPostprocessor().GetL2Normalize());
 | |
|   std::cout << "Detect Done! Cosine 01: " << cosine01
 | |
|             << ", Cosine 02:" << cosine02 << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char *argv[]) {
 | |
|   if (argc < 7) {
 | |
|     std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
 | |
|                  "e.g ./infer_demo mobilefacenet_adaface.pdmodel "
 | |
|                  "mobilefacenet_adaface.pdiparams "
 | |
|                  "test_lite_focal_AdaFace_0.JPG test_lite_focal_AdaFace_1.JPG "
 | |
|                  "test_lite_focal_AdaFace_2.JPG 0"
 | |
|               << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with gpu and use tensorrt backend; 3: run with kunlunxin."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   std::vector<std::string> image_files = {argv[3], argv[4], argv[5]};
 | |
|   if (std::atoi(argv[6]) == 0) {
 | |
|     std::cout << "use CpuInfer" << std::endl;
 | |
|     CpuInfer(argv[1], argv[2], image_files);
 | |
|   } else if (std::atoi(argv[6]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2], image_files);
 | |
|   } else if (std::atoi(argv[6]) == 2) {
 | |
|     TrtInfer(argv[1], argv[2], image_files);
 | |
|   } else if (std::atoi(argv[6]) == 3) {
 | |
|     KunlunXinInfer(argv[1], argv[2], image_files);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |