mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 aa6931bee9
			
		
	
	aa6931bee9
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			221 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from fastdeploy import ModelFormat
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| import runtime_config as rc
 | |
| 
 | |
| 
 | |
| def test_detection_yolov5seg():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
 | |
|     result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result2.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(input_url2, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
|     fd.download(result_url2, "resources")
 | |
| 
 | |
|     model_file = "resources/yolov5s-seg.onnx"
 | |
|     rc.test_option.use_ort_backend()
 | |
|     model = fd.vision.detection.YOLOv5Seg(
 | |
|         model_file, runtime_option=rc.test_option)
 | |
| 
 | |
|     with open("resources/yolov5seg_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     with open("resources/yolov5seg_result2.pkl", "rb") as f:
 | |
|         expect2 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|     im2 = cv2.imread("./resources/000000570688.jpg")
 | |
| 
 | |
|     for i in range(3):
 | |
|         # test single predict
 | |
|         result1 = model.predict(im1)
 | |
|         result2 = model.predict(im2)
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_boxes_2 = np.fabs(
 | |
|             np.array(result2.boxes) - np.array(expect2["boxes"]))
 | |
| 
 | |
|         diff_label_1 = np.fabs(
 | |
|             np.array(result1.label_ids) - np.array(expect1["label_ids"]))
 | |
|         diff_label_2 = np.fabs(
 | |
|             np.array(result2.label_ids) - np.array(expect2["label_ids"]))
 | |
| 
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
|         diff_scores_2 = np.fabs(
 | |
|             np.array(result2.scores) - np.array(expect2["scores"]))
 | |
| 
 | |
|         # for masks
 | |
|         for j in range(np.array(result1.boxes).shape[0]):
 | |
|             result_mask_1 = np.array(result1.masks[j].data).reshape(
 | |
|                 result1.masks[j].shape)
 | |
|             diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
 | |
|                                                                    str(j)]))
 | |
|             nonzero_nums = np.count_nonzero(diff_mask_1)
 | |
|             nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
 | |
|                                             diff_mask_1.shape[1])
 | |
|             assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
 | |
| 
 | |
|         for k in range(np.array(result2.boxes).shape[0]):
 | |
|             result_mask_2 = np.array(result2.masks[k].data).reshape(
 | |
|                 result2.masks[k].shape)
 | |
|             diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
 | |
|                                                                    str(k)]))
 | |
|             nonzero_nums = np.count_nonzero(diff_mask_2)
 | |
|             nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
 | |
|                                             diff_mask_2.shape[1])
 | |
|             assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-01, "There's difference in detection boxes 1."
 | |
|         assert diff_label_1.max(
 | |
|         ) < 1e-02, "There's difference in detection label 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-04, "There's difference in detection score 1."
 | |
| 
 | |
|         assert diff_boxes_2.max(
 | |
|         ) < 1e-01, "There's difference in detection boxes 2."
 | |
|         assert diff_label_2.max(
 | |
|         ) < 1e-02, "There's difference in detection label 2."
 | |
|         assert diff_scores_2.max(
 | |
|         ) < 1e-04, "There's difference in detection score 2."
 | |
| 
 | |
|         # test batch predict
 | |
|         results = model.batch_predict([im1, im2])
 | |
|         result1 = results[0]
 | |
|         result2 = results[1]
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_boxes_2 = np.fabs(
 | |
|             np.array(result2.boxes) - np.array(expect2["boxes"]))
 | |
| 
 | |
|         diff_label_1 = np.fabs(
 | |
|             np.array(result1.label_ids) - np.array(expect1["label_ids"]))
 | |
|         diff_label_2 = np.fabs(
 | |
|             np.array(result2.label_ids) - np.array(expect2["label_ids"]))
 | |
| 
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
|         diff_scores_2 = np.fabs(
 | |
|             np.array(result2.scores) - np.array(expect2["scores"]))
 | |
| 
 | |
|         # for masks
 | |
|         for j in range(np.array(result1.boxes).shape[0]):
 | |
|             result_mask_1 = np.array(result1.masks[j].data).reshape(
 | |
|                 result1.masks[j].shape)
 | |
|             diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
 | |
|                                                                    str(j)]))
 | |
|             nonzero_nums = np.count_nonzero(diff_mask_1)
 | |
|             nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
 | |
|                                             diff_mask_1.shape[1])
 | |
|             assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
 | |
| 
 | |
|         for k in range(np.array(result2.boxes).shape[0]):
 | |
|             result_mask_2 = np.array(result2.masks[k].data).reshape(
 | |
|                 result2.masks[k].shape)
 | |
|             diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
 | |
|                                                                    str(k)]))
 | |
|             nonzero_nums = np.count_nonzero(diff_mask_2)
 | |
|             nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
 | |
|                                             diff_mask_2.shape[1])
 | |
|             assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-01, "There's difference in detection boxes 1."
 | |
|         assert diff_label_1.max(
 | |
|         ) < 1e-02, "There's difference in detection label 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-03, "There's difference in detection score 1."
 | |
| 
 | |
|         assert diff_boxes_2.max(
 | |
|         ) < 1e-01, "There's difference in detection boxes 2."
 | |
|         assert diff_label_2.max(
 | |
|         ) < 1e-02, "There's difference in detection label 2."
 | |
|         assert diff_scores_2.max(
 | |
|         ) < 1e-04, "There's difference in detection score 2."
 | |
| 
 | |
| 
 | |
| def test_detection_yolov5seg_runtime():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
| 
 | |
|     model_file = "resources/yolov5s-seg.onnx"
 | |
| 
 | |
|     preprocessor = fd.vision.detection.YOLOv5SegPreprocessor()
 | |
|     postprocessor = fd.vision.detection.YOLOv5SegPostprocessor()
 | |
| 
 | |
|     rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
 | |
|     rc.test_option.use_ort_backend()
 | |
|     runtime = fd.Runtime(rc.test_option)
 | |
| 
 | |
|     with open("resources/yolov5seg_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
| 
 | |
|     for i in range(3):
 | |
|         # test runtime
 | |
|         input_tensors, ims_info = preprocessor.run([im1.copy()])
 | |
|         output_tensors = runtime.infer({"images": input_tensors[0]})
 | |
|         results = postprocessor.run(output_tensors, ims_info)
 | |
|         result1 = results[0]
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_label_1 = np.fabs(
 | |
|             np.array(result1.label_ids) - np.array(expect1["label_ids"]))
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
| 
 | |
|         # for masks
 | |
|         for j in range(np.array(result1.boxes).shape[0]):
 | |
|             result_mask_1 = np.array(result1.masks[j].data).reshape(
 | |
|                 result1.masks[j].shape)
 | |
|             diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
 | |
|                                                                    str(j)]))
 | |
|             nonzero_nums = np.count_nonzero(diff_mask_1)
 | |
|             nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
 | |
|                                             diff_mask_1.shape[1])
 | |
|             assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-01, "There's difference in detection boxes 1."
 | |
|         assert diff_label_1.max(
 | |
|         ) < 1e-02, "There's difference in detection label 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-04, "There's difference in detection score 1."
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_detection_yolov5seg()
 | |
|     test_detection_yolov5seg_runtime()
 |