mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 1c115bb237
			
		
	
	1c115bb237
	
	
	
		
			
			* cpp example run success * add landmarks * fix reviewed problem * add pybind * add readme in examples * fix reviewed problem * new file: tests/models/test_centerface.py * fix reviewed problem 230202
		
			
				
	
	
		
			99 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from fastdeploy import ModelFormat
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| import runtime_config as rc
 | |
| 
 | |
| 
 | |
| def test_facedet_centerface():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx"
 | |
|     input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
| 
 | |
|     model_file = "resources/CenterFace.onnx"
 | |
|     model = fd.vision.facedet.CenterFace(
 | |
|         model_file, runtime_option=rc.test_option)
 | |
| 
 | |
|     with open("resources/centerface_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg")
 | |
|     print(expect1)
 | |
|     for i in range(3):
 | |
|         # test single predict
 | |
|         result1 = model.predict(im1)
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-04, "There's difference in detection boxes 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-05, "There's difference in detection score 1."
 | |
| 
 | |
| def test_facedet_centerface_runtime():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx"
 | |
|     input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
| 
 | |
|     model_file = "resources/CenterFace.onnx"
 | |
| 
 | |
|     preprocessor = fd.vision.facedet.CenterFacePreprocessor()
 | |
|     postprocessor = fd.vision.facedet.CenterFacePostprocessor()
 | |
| 
 | |
|     rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
 | |
|     rc.test_option.use_openvino_backend()
 | |
|     runtime = fd.Runtime(rc.test_option)
 | |
| 
 | |
|     with open("resources/centerface_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg")
 | |
| 
 | |
|     for i in range(3):
 | |
|         # test runtime
 | |
|         input_tensors, ims_info = preprocessor.run([im1.copy()])
 | |
|         output_tensors = runtime.infer({"input.1": input_tensors[0]})
 | |
|         results = postprocessor.run(output_tensors, ims_info)
 | |
|         result1 = results[0]
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-04, "There's difference in detection boxes 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-05, "There's difference in detection score 1."
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_facedet_centerface()
 | |
|     test_facedet_centerface_runtime() |