mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
English | 简体中文
Example of PaddleClas models Python Deployment
Before deployment, two steps require confirmation.
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements.
-
- Install the FastDeploy Python whl package. Please refer to FastDeploy Python Installation.
This directory provides examples that infer.py
fast finishes the deployment of ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/python
# Download the ResNet50_vd model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# Use TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
# IPU inference(Attention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.)
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
# XPU inference
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device xpu --topk 1
The result returned after running is as follows
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
PaddleClasModel Python Interface
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
PaddleClas model loading and initialization, where model_file and params_file are the Paddle inference files exported from the training model. Refer to Model Export for more information
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- config_file(str): Inference deployment configuration file
- runtime_option(RuntimeOption): Backend Inference configuration. None by default. (use the default configuration)
- model_format(ModelFormat): Model format. Paddle format by default
predict function
PaddleClasModel.predict(input_image, topk=1)
Model prediction interface. Input images and output classification topk results directly.
Parameter
- input_image(np.ndarray): Input data in HWC or BGR format
- topk(int): Return the topk classification results with the highest prediction probability. Default 1
Return
Return
fastdeploy.vision.ClassifyResult
structure. Refer to Visual Model Prediction Results for the description of the structure.