mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* support pool * update pooling * add pooler_config and check * update * support AutoWeightsLoader load weight * fix * update * delete print * update pre-commit * fix * fix xpu * fix ModelRegistry->model_registry * fix Copilot review * fix pooler.py * delete StepPooler * fix abstract * fix default_loader_v1 * fix Pre Commit * support torch qwen3 dense * add test and fix torch-qwen * fix * fix * adapter ci: * fix review * fix pooling_params.py * fix * fix tasks.py 2025 * fix print and logger * Modefy ModelRegistry and delete AutoWeightsLoader * fix logger * fix test_embedding * fix ci bug * ernie4_5 model_registry * fix test * support Qwen3-Embedding-0.6B tp=1 load * fix extra code * fix * delete fix vocab_size * delete prepare_params_dict * fix:
265 lines
9.5 KiB
Python
265 lines
9.5 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import re
|
|
from contextlib import contextmanager
|
|
from typing import Any, Optional, Union
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.utils import get_tensor
|
|
|
|
|
|
class BitMaskTracker:
|
|
def __init__(self, length: int):
|
|
"""
|
|
Track filling status along a single dimension using a bitmask.
|
|
|
|
Args:
|
|
length (int): Number of positions to track (e.g., columns or rows)
|
|
"""
|
|
self.length = length
|
|
self.mask = 0
|
|
|
|
def mark(self, start: int, end: int):
|
|
"""
|
|
Mark the range [start, end) as filled.
|
|
|
|
Args:
|
|
start (int): Start index (inclusive)
|
|
end (int): End index (exclusive)
|
|
"""
|
|
if start < 0 or end > self.length or start >= end:
|
|
raise ValueError("Invalid mark range")
|
|
block = ((1 << (end - start)) - 1) << start
|
|
self.mask |= block
|
|
|
|
def is_full(self) -> bool:
|
|
"""Return True if all positions are filled."""
|
|
return self.mask == (1 << self.length) - 1
|
|
|
|
|
|
class TensorTracker:
|
|
def __init__(self, shape: tuple, output_dim: int):
|
|
"""
|
|
Unified tracker for 2D or 3D tensors.
|
|
|
|
Args:
|
|
shape (tuple): Tensor shape
|
|
output_dim (bool):
|
|
- 2D: True = track columns (dim=1), False = track rows (dim=0)
|
|
- 3D: True = track columns (dim=2), False = track rows (dim=1)
|
|
"""
|
|
self.shape = shape
|
|
self.output_dim = output_dim
|
|
|
|
if len(shape) == 2:
|
|
self.track_dim = 1 if output_dim else 0
|
|
self.trackers = [BitMaskTracker(shape[self.track_dim])]
|
|
elif len(shape) == 3:
|
|
batch = shape[0]
|
|
self.track_dim = 2 if output_dim else 1
|
|
self.trackers = [BitMaskTracker(shape[self.track_dim]) for _ in range(batch)]
|
|
else:
|
|
raise ValueError("Only 2D or 3D tensors supported")
|
|
|
|
def mark(self, start: int = 0, end: int = None, batch_id: int = None):
|
|
"""
|
|
Mark a slice of the tensor as filled.
|
|
|
|
Args:
|
|
batch_id (int, optional): Batch index for 3D tensors
|
|
start (int): Start index along tracked dimension
|
|
end (int): End index along tracked dimension
|
|
"""
|
|
if end is None:
|
|
end = self.shape[self.track_dim]
|
|
|
|
if len(self.shape) == 2:
|
|
self.trackers[0].mark(start, end)
|
|
else:
|
|
if batch_id is None:
|
|
raise ValueError("batch_id must be provided for 3D tensor")
|
|
self.trackers[batch_id].mark(start, end)
|
|
|
|
def is_fully_copied(self) -> bool:
|
|
"""Return True if the tensor is fully filled along tracked dimension(s)."""
|
|
return all(tr.is_full() for tr in self.trackers)
|
|
|
|
|
|
def set_weight_attrs(param, param_attr_map: Optional[dict[str, Any]]):
|
|
if param_attr_map is None:
|
|
return
|
|
for key, value in param_attr_map.items():
|
|
setattr(param, key, value)
|
|
|
|
|
|
def slice_fn(weight_or_paramter, output_dim, start, end, step=1):
|
|
if hasattr(weight_or_paramter, "get_shape"):
|
|
shape = weight_or_paramter.get_shape()
|
|
else:
|
|
shape = weight_or_paramter.shape
|
|
if len(shape) == 1:
|
|
weight_or_paramter = weight_or_paramter[start:end]
|
|
elif output_dim:
|
|
weight_or_paramter = weight_or_paramter[..., start:end]
|
|
else:
|
|
weight_or_paramter = weight_or_paramter[start:end, ...]
|
|
return weight_or_paramter
|
|
|
|
|
|
def process_weights_after_loading(sublayers_dict: dict):
|
|
"""
|
|
process_weights_after_loading: e.g., handle extracted weights (quantization, reshaping, etc.)
|
|
"""
|
|
|
|
def fn(model_sublayer_name: str, param=None):
|
|
from fastdeploy.model_executor.layers.linear import KVBatchLinear
|
|
|
|
if model_sublayer_name not in sublayers_dict:
|
|
return
|
|
model_sublayer = sublayers_dict[model_sublayer_name]
|
|
if isinstance(model_sublayer, KVBatchLinear):
|
|
model_sublayer.process_weights_after_loading()
|
|
if hasattr(model_sublayer, "quant_method"):
|
|
quant_method = getattr(model_sublayer, "quant_method", None)
|
|
if not hasattr(quant_method, "process_weights_after_loading"):
|
|
return
|
|
if param is not None and hasattr(param, "tensor_track") and not param.tensor_track.is_fully_copied():
|
|
return
|
|
quant_method.process_weights_after_loading(model_sublayer)
|
|
|
|
return fn
|
|
|
|
|
|
def free_tensor(tensor):
|
|
if hasattr(tensor, "tensor_track"):
|
|
tensor.tensor_track = None
|
|
tensor.value().get_tensor()._clear()
|
|
del tensor
|
|
|
|
|
|
def default_weight_loader(fd_config: FDConfig) -> None:
|
|
"""Default weight loader"""
|
|
|
|
def fn(param, loaded_weight, shard_id: Optional[Union[int, str]] = None):
|
|
"""fn"""
|
|
|
|
output_dim = getattr(param, "output_dim", None)
|
|
weight_need_transpose = getattr(param, "weight_need_transpose", False)
|
|
if weight_need_transpose:
|
|
loaded_weight = get_tensor(loaded_weight)
|
|
loaded_weight = loaded_weight.transpose([1, 0])
|
|
# Tensor parallelism splits the weight along the output_dim
|
|
if output_dim is not None and fd_config.parallel_config.tensor_parallel_size > 1:
|
|
dim = -1 if output_dim else 0
|
|
if isinstance(loaded_weight, paddle.Tensor):
|
|
size = loaded_weight.shape[dim]
|
|
else:
|
|
size = loaded_weight.get_shape()[dim]
|
|
block_size = size // fd_config.parallel_config.tensor_parallel_size
|
|
shard_offset = fd_config.parallel_config.tensor_parallel_rank * block_size
|
|
shard_size = (fd_config.parallel_config.tensor_parallel_rank + 1) * block_size
|
|
loaded_weight = slice_fn(loaded_weight, output_dim, shard_offset, shard_size)
|
|
|
|
loaded_weight = get_tensor(loaded_weight)
|
|
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
|
|
if param.dtype != loaded_weight.dtype:
|
|
if loaded_weight.dtype == paddle.int8 and param.dtype == paddle.float8_e4m3fn:
|
|
loaded_weight = loaded_weight.view(param.dtype)
|
|
else:
|
|
loaded_weight = loaded_weight.cast(param.dtype)
|
|
if param.shape != loaded_weight.shape:
|
|
# for e_score_correction_bias
|
|
loaded_weight = loaded_weight.reshape(param.shape)
|
|
assert param.shape == loaded_weight.shape, (
|
|
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
|
|
)
|
|
param.copy_(loaded_weight, False)
|
|
|
|
return fn
|
|
|
|
|
|
@contextmanager
|
|
def temporary_dtype(dtype: str):
|
|
"""Temporarily set Paddle default dtype"""
|
|
orig_dtype = paddle.get_default_dtype()
|
|
try:
|
|
if dtype is not None and dtype == "float32":
|
|
paddle.set_default_dtype(dtype)
|
|
yield
|
|
finally:
|
|
paddle.set_default_dtype(orig_dtype)
|
|
|
|
|
|
@contextmanager
|
|
def switch_config_context(config_obj, config_attr_name, value):
|
|
"""switch_config_context"""
|
|
origin_value = getattr(config_obj, config_attr_name)
|
|
setattr(config_obj, config_attr_name, value)
|
|
try:
|
|
yield
|
|
finally:
|
|
setattr(config_obj, config_attr_name, origin_value)
|
|
|
|
|
|
def rename_offline_ckpt_suffix_to_fd_suffix(
|
|
fd_config, ckpt_weight_suffix: str = "quant_weight", ckpt_scale_suffix="weight_scale"
|
|
):
|
|
"""
|
|
Create a function to rename checkpoint key suffixes for FastDeploy.
|
|
|
|
Replaces the original suffix (default "weight_scale") with the FD target
|
|
suffix (default "quant_weight"). Only the suffix is changed.
|
|
|
|
Args:
|
|
fd_config: FastDeploy configuration.
|
|
ckpt_weight_suffix: Original checkpoint key suffix.
|
|
ckpt_scale_suffix: Target FastDeploy key suffix.
|
|
|
|
Returns:
|
|
Callable: Function that renames checkpoint keys.
|
|
"""
|
|
fd_suffix_map = {} # noqa: F841
|
|
fp8_suffix_map = {
|
|
ckpt_weight_suffix: "weight",
|
|
ckpt_scale_suffix: "weight_scale_inv",
|
|
}
|
|
moe_quant_type = ""
|
|
dense_quant_type = ""
|
|
if fd_config.quant_config is not None:
|
|
if fd_config.quant_config.name() == "mix_quant":
|
|
moe_quant_type = fd_config.quant_config.moe_quant_type
|
|
dense_quant_type = fd_config.quant_config.dense_quant_type
|
|
else:
|
|
moe_quant_type = fd_config.quant_config.name()
|
|
dense_quant_type = fd_config.quant_config.name()
|
|
|
|
def fn(loaded_weight_name, is_moe):
|
|
if fd_config.quant_config is None or fd_config.quant_config.is_checkpoint_bf16:
|
|
return loaded_weight_name
|
|
# Can be extended to other offline quantization suffixes if needed.
|
|
if (is_moe and moe_quant_type == "block_wise_fp8") or (not is_moe and dense_quant_type == "block_wise_fp8"):
|
|
fd_suffix_map = fp8_suffix_map
|
|
for ckpt_suffix, fd_suffix in fd_suffix_map.items():
|
|
if re.search(rf"{ckpt_suffix}$", loaded_weight_name):
|
|
loaded_weight_name = loaded_weight_name.replace(ckpt_suffix, fd_suffix)
|
|
return loaded_weight_name
|
|
return loaded_weight_name
|
|
|
|
return fn
|