Files
FastDeploy/fastdeploy/model_executor/layers/utils.py
2025-09-05 11:48:21 +08:00

375 lines
12 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import functools
from typing import Tuple, Union
import numpy as np
import paddle
from paddle import Tensor, nn
from paddle.framework import in_dynamic_mode
from scipy.linalg import block_diag
from fastdeploy.platforms import current_platform
if current_platform.is_cuda() and current_platform.available():
try:
from fastdeploy.model_executor.ops.gpu import (
get_padding_offset,
speculate_get_padding_offset,
)
except Exception:
raise ImportError(
"Verify environment consistency between compilation and FastDeploy installation. "
"And ensure the Paddle version supports FastDeploy's custom operators"
)
from fastdeploy import envs
cache_params = envs.FD_CACHE_PARAMS
if cache_params != "none":
c8_state_dict = paddle.load(cache_params, return_numpy=True)
def per_block_cast_to_fp8(x: Tensor, block_size: list = [128, 128]) -> Tuple[Tensor, Tensor]:
"""
Only used in deep_gemm block wise quant weight.
copy from FastDeploy/custom_ops/gpu_ops/fp8_deep_gemm/tests/test_core.py.
"""
from fastdeploy.model_executor.ops.gpu.deep_gemm import ceil_div
assert x.dim() == 2
m, n = x.shape
x_padded = paddle.zeros(
(
ceil_div(m, block_size[0]) * block_size[0],
ceil_div(n, block_size[1]) * block_size[1],
),
dtype=x.dtype,
)
x_padded[:m, :n] = x
x_view = paddle.view(
x_padded,
(-1, block_size[0], x_padded.shape[1] // block_size[1], block_size[1]),
)
x_abs = paddle.abs(x_view).astype(paddle.float32)
x_amax = paddle.amax(x_abs, axis=(1, 3), keepdim=True)
x_amax = paddle.clip(x_amax, min=1e-4)
x_scaled = (x_view * (448.0 / x_amax)).astype(paddle.float8_e4m3fn)
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (
paddle.view(x_amax / 448.0, (x_view.shape[0], x_view.shape[2]))
)
# for distributed tensor model parallel
def _set_var_distributed(var: Tensor, split_axis: int):
"""
Set whether the variable is distributed. If the variable is None, no operation will be performed.
Args:
var (Tensor): A Variable object, which can be None. The default value is None.
The Variable object should have an attribute 'is_distributed' to indicate whether
the variable has been processed in a distributed manner.
split_axis (int): the sharding dimension of dist tensors.
Returns:
None. No return value.
"""
if var is None:
return
var.is_distributed = True
var.split_axis = split_axis
if not in_dynamic_mode():
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block = paddle.static.default_startup_program().current_block()
main_block = paddle.static.default_main_program().current_block()
startup_block._find_var_recursive(var.name).is_distributed = True
main_block._find_var_recursive(var.name).is_distributed = True
def get_tensor(input: Union[paddle.Tensor, np.ndarray, str], model_path=None) -> paddle.Tensor:
"""
Return a corresponding PaddlePaddle tensor based on the type and content of the input.
Args:
input (Union[paddle.Tensor, np.ndarray, str]): The input data.
Returns:
paddle.Tensor: Returns a PaddlePaddle tensor.
"""
if "PySafeSlice" in str(type(input)):
input = input.get()
if isinstance(input, paddle.Tensor):
if input.place.is_cpu_place():
return input.to(paddle.device.get_device())
return input
elif isinstance(input, np.ndarray):
return paddle.to_tensor(input)
elif isinstance(input, str):
from fastdeploy.model_executor.load_weight_utils import load_reordered_experts
return load_reordered_experts(model_path, input)
else:
return input
def matmul_hadU(X: Tensor) -> paddle.Tensor:
"""
Perform matrix multiplication using the Hadamard matrix.
Args:
X (Tensor): The tensor to be multiplied.
Returns:
Tensor: The tensor after Hadamard matrix multiplication, with the same shape as the input tensor X.
"""
input = X.clone().reshape((-1, X.shape[-1], 1))
output = input.clone()
while input.shape[1] > 1:
input = input.reshape((input.shape[0], input.shape[1] // 2, 2, input.shape[2]))
output = output.reshape(input.shape)
output[:, :, 0, :] = input[:, :, 0, :] + input[:, :, 1, :]
output[:, :, 1, :] = input[:, :, 0, :] - input[:, :, 1, :]
output = output.reshape((input.shape[0], input.shape[1], -1))
(input, output) = (output, input)
del output
return input.reshape(X.shape)
def random_hadamard_matrix(block_size: int, dtype: Union[paddle.dtype, str]) -> paddle.Tensor:
"""
Generate a random Hadamard matrix.
Args:
block_size (int): The size of the block, i.e., the number of rows and columns of the matrix.
dtype (str): The data type, for example 'float32'.
Returns:
paddle.Tensor: The generated random Hadamard matrix.
"""
Q = paddle.diag(paddle.ones((block_size), dtype=dtype))
block = matmul_hadU(Q)
return block
def create_hadamard_matrix(hidden_size: int) -> paddle.Tensor:
"""
Generate a Hadamard matrix.
Args:
hidden_size (int): The size of the hidden layer.
Returns:
paddle.Tensor: The generated Hadamard matrix.
"""
hadamard_block_size = 32
h = random_hadamard_matrix(hadamard_block_size, "float32")
block_num = hidden_size // hadamard_block_size
hadamard_matrix = paddle.to_tensor(block_diag(*[h for i in range(block_num)]))
return hadamard_matrix
def ensure_divisibility(numerator, denominator):
"""
Ensure the numerator is divisible by the denominator.
Args:
numerator (int): The numerator.
denominator (int): The denominator.
Returns:
None
Raises:
AssertionError: If the numerator cannot be evenly divided by the denominator, an assertion error is raised.
"""
assert numerator % denominator == 0, f"{numerator} is not divisible by {denominator}"
def divide(numerator: int, denominator: int):
"""
Calculate the division result of two numbers.
Args:
numerator (int): The dividend.
denominator (int): The divisor.
Returns:
int: The result of the division, which is the quotient of the dividend divided by the divisor.
"""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def remove_padding(
max_len: paddle.Tensor,
input_ids: paddle.Tensor,
seq_lens_this_time: paddle.Tensor,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""
Remove padded sequences from the input.
Args:
max_len (paddle.Tensor): The maximum length of the input sequences.
input_ids (paddle.Tensor): The IDs of the input sequences.
seq_lens_this_time (paddle.Tensor): The actual length of each sequence.
Returns:
tuple: A tuple containing:
- The sequence IDs with padding removed (paddle.Tensor).
- The padding offsets (paddle.Tensor).
- The cumulative offsets (paddle.Tensor).
- The query sequence lengths (paddle.Tensor).
- The key sequence lengths (paddle.Tensor).
"""
if current_platform.is_cuda():
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time, dtype="int32")
token_num = paddle.sum(seq_lens_this_time)
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num, seq_lens_this_time)
return (
ids_remove_padding,
padding_offset,
cum_offsets,
cu_seqlens_q,
cu_seqlens_k,
)
def speculate_remove_padding(
max_len: paddle.Tensor,
input_ids: paddle.Tensor,
seq_lens_this_time: paddle.Tensor,
draft_tokens: paddle.Tensor,
seq_lens_encoder: paddle.Tensor,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""
Remove padding from sequences.
Args:
max_len (paddle.Tensor): The maximum length of the sequences.
input_ids (paddle.Tensor): The IDs of the input sequences.
seq_lens_this_time (paddle.Tensor): The lengths of the sequences in the current batch.
draft_tokens (paddle.Tensor): The draft tokens.
seq_lens_encoder (paddle.Tensor): The lengths of the encoder sequences.
Returns:
tuple: A tuple containing:
- The input sequence IDs with padding removed (paddle.Tensor).
- Padding offsets (paddle.Tensor).
- Cumulative offsets (paddle.Tensor).
- Query sequence lengths (paddle.Tensor).
- Key sequence lengths (paddle.Tensor).
"""
if current_platform.is_cuda():
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time, dtype="int32")
token_num = paddle.sum(seq_lens_this_time)
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = speculate_get_padding_offset(
input_ids,
draft_tokens,
cum_offsets_now,
token_num,
seq_lens_this_time,
seq_lens_encoder,
)
return (
ids_remove_padding,
padding_offset,
cum_offsets,
cu_seqlens_q,
cu_seqlens_k,
)
class CpuGuard:
"""CpuGuard"""
def __init__(self):
"""init"""
pass
def __enter__(self):
"""enter"""
self.ori_device = paddle.device.get_device()
paddle.device.set_device("cpu")
def __exit__(self, exc_type, exc_val, exc_tb):
"""exit"""
paddle.device.set_device(self.ori_device)
def create_and_set_parameter(layer: nn.Layer, name: str, tensor: paddle.Tensor):
"""
Create a parameter for a specified layer and set its value to the given tensor.
Args:
layer (nn.Layer): The layer object to which the parameter will be added.
name (str): The name of the parameter to be created.
tensor (paddle.Tensor): The tensor to set as the value of the parameter.
Returns:
None
"""
setattr(
layer,
name,
layer.create_parameter(
shape=tensor.shape,
dtype=tensor.dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
getattr(layer, name).set_value(tensor)
@functools.cache
def create_empty_tensor(shape: Tuple[int, ...], dtype: Union[paddle.dtype, str]) -> paddle.Tensor:
"""
Creates and caches an empty tensor with the specified shape and data type.
Args:
shape (Tuple[int, ...]): A tuple representing the dimensions of the tensor.
dtype (Union[paddle.dtype, str]): The data type for the tensor, such as 'bfloat16', 'float16', etc.
Returns:
paddle.Tensor: An empty tensor with the specified shape and data type.
"""
return paddle.empty(list(shape), dtype=dtype)