mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* support pool * update pooling * add pooler_config and check * update * support AutoWeightsLoader load weight * fix * update * delete print * update pre-commit * fix * fix xpu * fix ModelRegistry->model_registry * fix Copilot review * fix pooler.py * delete StepPooler * fix abstract * fix default_loader_v1 * fix Pre Commit * support torch qwen3 dense * add test and fix torch-qwen * fix * fix * adapter ci: * fix review * fix pooling_params.py * fix * fix tasks.py 2025 * fix print and logger * Modefy ModelRegistry and delete AutoWeightsLoader * fix logger * fix test_embedding * fix ci bug * ernie4_5 model_registry * fix test * support Qwen3-Embedding-0.6B tp=1 load * fix extra code * fix * delete fix vocab_size * delete prepare_params_dict * fix:
171 lines
6.2 KiB
Python
171 lines
6.2 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from copy import deepcopy
|
|
from typing import TYPE_CHECKING, Annotated, Any, Optional
|
|
|
|
import msgspec
|
|
|
|
from fastdeploy.engine.sampling_params import RequestOutputKind
|
|
from fastdeploy.engine.tasks import PoolingTask
|
|
|
|
if TYPE_CHECKING:
|
|
from fastdeploy.config import ModelConfig
|
|
|
|
|
|
class PoolingParams:
|
|
"""API parameters for pooling models.
|
|
|
|
Attributes:
|
|
normalize: Whether to normalize the embeddings outputs.
|
|
dimensions: Reduce the dimensions of embeddings
|
|
if model support matryoshka representation.
|
|
activation: Whether to apply activation function to
|
|
the classification outputs.
|
|
softmax: Whether to apply softmax to the reward outputs.
|
|
step_tag_id: Step tag ID for process reward models to identify
|
|
specific steps in multi-step reasoning tasks.
|
|
returned_token_ids: List of token IDs to return rewards for,
|
|
used for fine-grained reward calculation.
|
|
task: Internal use only. Specifies the pooling task type
|
|
("embed" for embeddings, "encode" for reward models).
|
|
requires_token_ids: Internal use only. Whether token ID information
|
|
is required for processing.
|
|
extra_kwargs: Internal use only. Dictionary for storing additional
|
|
custom parameters for extended functionality.
|
|
output_kind: Output type specification, fixed to FINAL_ONLY
|
|
(only final outputs are returned).
|
|
"""
|
|
|
|
truncate_prompt_tokens: Optional[Annotated[int, msgspec.Meta(ge=-1)]] = None
|
|
"""If set to -1, will use the truncation size supported by the model. If
|
|
set to an integer k, will use only the last k tokens from the prompt
|
|
(i.e., left truncation). If set to `None`, truncation is disabled."""
|
|
|
|
# for embeddings models
|
|
dimensions: Optional[int] = None
|
|
normalize: Optional[bool] = None
|
|
|
|
# for reward models
|
|
softmax: Optional[bool] = None
|
|
step_tag_id: Optional[int] = None
|
|
returned_token_ids: Optional[list[int]] = None
|
|
|
|
task: Optional[PoolingTask] = None
|
|
"""Internal use only."""
|
|
|
|
requires_token_ids: bool = False
|
|
"""Internal use only."""
|
|
|
|
extra_kwargs: Optional[dict[str, Any]] = None
|
|
"""Internal use only."""
|
|
|
|
output_kind: RequestOutputKind = RequestOutputKind.FINAL_ONLY
|
|
|
|
@property
|
|
def _all_parameters(self) -> list[str]:
|
|
return ["dimensions", "normalize", "softmax", "step_tag_id", "returned_token_ids"]
|
|
|
|
@property
|
|
def valid_parameters(self):
|
|
return {
|
|
"embed": ["dimensions", "normalize"],
|
|
"encode": ["softmax", "step_tag_id", "returned_token_ids"],
|
|
}
|
|
|
|
def clone(self) -> "PoolingParams":
|
|
"""Returns a deep copy of the PoolingParams instance."""
|
|
return deepcopy(self)
|
|
|
|
def verify(self, task: PoolingTask, model_config: Optional["ModelConfig"] = None) -> None:
|
|
|
|
if self.task is None:
|
|
self.task = task
|
|
elif self.task != task:
|
|
msg = f"You cannot overwrite {self.task=!r} with {task=!r}!"
|
|
raise ValueError(msg)
|
|
|
|
# NOTE: Task validation needs to done against the model instance,
|
|
# which is not available in model config. So, it's not included
|
|
# in this method
|
|
|
|
self._merge_default_parameters(model_config)
|
|
self._set_default_parameters(model_config)
|
|
self._verify_valid_parameters()
|
|
|
|
def _merge_default_parameters(self, model_config: Optional["ModelConfig"] = None) -> None:
|
|
|
|
if model_config is None:
|
|
return
|
|
|
|
pooler_config = model_config.pooler_config
|
|
if pooler_config is None:
|
|
return
|
|
|
|
assert self.task is not None, "task must be set"
|
|
valid_parameters = self.valid_parameters[self.task]
|
|
|
|
for k in valid_parameters:
|
|
if getattr(pooler_config, k, None) is None:
|
|
continue
|
|
|
|
if getattr(self, k, None) is None:
|
|
setattr(self, k, getattr(pooler_config, k))
|
|
|
|
def _set_default_parameters(self, model_config: Optional["ModelConfig"]):
|
|
if self.task == "embed":
|
|
if self.normalize is None:
|
|
self.normalize = True
|
|
elif self.task == "encode":
|
|
if self.softmax is None:
|
|
self.softmax = True
|
|
else:
|
|
raise ValueError(f"Unknown pooling task: {self.task}")
|
|
|
|
def _verify_valid_parameters(self):
|
|
assert self.task is not None, "task must be set"
|
|
valid_parameters = self.valid_parameters[self.task]
|
|
invalid_parameters = []
|
|
for k in self._all_parameters:
|
|
if k in valid_parameters:
|
|
continue
|
|
|
|
if getattr(self, k, None) is not None:
|
|
invalid_parameters.append(k)
|
|
|
|
if invalid_parameters:
|
|
raise ValueError(
|
|
f"Task {self.task} only supports {valid_parameters} "
|
|
f"parameters, does not support "
|
|
f"{invalid_parameters} parameters"
|
|
)
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"PoolingParams("
|
|
f"task={self.task}, "
|
|
f"normalize={self.normalize}, "
|
|
f"dimensions={self.dimensions}, "
|
|
f"softmax={self.softmax}, "
|
|
f"step_tag_id={self.step_tag_id}, "
|
|
f"returned_token_ids={self.returned_token_ids}, "
|
|
f"requires_token_ids={self.requires_token_ids}, "
|
|
f"extra_kwargs={self.extra_kwargs})"
|
|
)
|
|
|
|
def __post_init__(self) -> None:
|
|
assert self.output_kind == RequestOutputKind.FINAL_ONLY, "For pooling output_kind has to be FINAL_ONLY"
|