mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* support qwen3-embedding * fix ci bug * support pooling dummy_run * fix * delete print * parallel_config.max_model_len * delete is_pooling_model in dummy_run * fix * fd_model * fix embedding load * fix * fix post_process
87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.engine.pooling_params import PoolingParams
|
|
|
|
|
|
@dataclass
|
|
class PoolingCursor:
|
|
index: list[int]
|
|
first_token_indices_gpu: paddle.Tensor
|
|
last_token_indices_gpu: paddle.Tensor
|
|
prompt_lens_cpu: paddle.Tensor
|
|
num_scheduled_tokens_cpu: paddle.Tensor
|
|
|
|
def __getitem__(self, indices: slice):
|
|
return PoolingCursor(
|
|
index=self.index[indices],
|
|
first_token_indices_gpu=self.first_token_indices_gpu[indices],
|
|
last_token_indices_gpu=self.last_token_indices_gpu[indices],
|
|
prompt_lens_cpu=self.prompt_lens_cpu[indices],
|
|
num_scheduled_tokens_cpu=self.num_scheduled_tokens_cpu[indices],
|
|
)
|
|
|
|
def is_partial_prefill(self):
|
|
return not paddle.all(self.prompt_lens_cpu == self.num_scheduled_tokens_cpu).item()
|
|
|
|
|
|
@dataclass
|
|
class PoolingMetadata:
|
|
"""Tensors for pooling."""
|
|
|
|
prompt_lens: paddle.Tensor # CPU Tensor
|
|
prompt_token_ids: Optional[paddle.Tensor]
|
|
pooling_params: list[PoolingParams]
|
|
pooling_cursor: Optional[PoolingCursor] = None
|
|
|
|
def __getitem__(self, indices: slice):
|
|
return PoolingMetadata(
|
|
prompt_lens=self.prompt_lens[indices],
|
|
prompt_token_ids=None if self.prompt_token_ids is None else self.prompt_token_ids[indices],
|
|
pooling_params=self.pooling_params[indices],
|
|
pooling_cursor=None if self.pooling_cursor is None else self.pooling_cursor[indices],
|
|
)
|
|
|
|
def build_pooling_cursor(self, num_scheduled_tokens: list[int], device: str):
|
|
self.pooling_cursor = build_pooling_cursor(num_scheduled_tokens, self.prompt_lens, device)
|
|
|
|
|
|
def build_pooling_cursor(num_scheduled_tokens: list[int], prompt_lens: paddle.Tensor, device: str):
|
|
assert len(prompt_lens) == len(num_scheduled_tokens)
|
|
|
|
n_seq = len(num_scheduled_tokens)
|
|
index = list(range(n_seq))
|
|
num_scheduled_tokens = paddle.to_tensor(num_scheduled_tokens)
|
|
cumsum = paddle.zeros([n_seq + 1], dtype="int64")
|
|
|
|
paddle.cumsum(num_scheduled_tokens, axis=0, out=cumsum[1:])
|
|
if device == "gpu":
|
|
cumsum_device = cumsum.cuda()
|
|
else:
|
|
cumsum_device = cumsum
|
|
return PoolingCursor(
|
|
index=index,
|
|
first_token_indices_gpu=cumsum_device[:n_seq],
|
|
last_token_indices_gpu=cumsum_device[1:] - 1,
|
|
prompt_lens_cpu=prompt_lens,
|
|
num_scheduled_tokens_cpu=num_scheduled_tokens,
|
|
)
|