mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
PP-MSVSR Python部署示例
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
本目录下提供infer.py
快速完成PP-MSVSR在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/sr/ppmsvsr/python
# 下载VSR模型文件和测试视频
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-MSVSR_reds_x4.tar
tar -xvf PP-MSVSR_reds_x4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU推理
python infer.py --model PP-MSVSR_reds_x4 --video person.mp4 --frame_num 2 --device cpu
# GPU推理
python infer.py --model PP-MSVSR_reds_x4 --video person.mp4 --frame_num 2 --device gpu
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
python infer.py --model PP-MSVSR_reds_x4 --video person.mp4 --frame_num 2 --device gpu --use_trt True
VSR Python接口
fd.vision.sr.PPMSVSR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)
PP-MSVSR模型加载和初始化,其中model_file和params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明模型导出
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为Paddle格式
predict函数
PPMSVSR.predict(frames)
模型预测结口,输入图像直接输出检测结果。
参数
- frames(list[np.ndarray]): 输入数据,注意需为HWC,BGR格式, frames为视频帧序列
返回 list[np.ndarray] 为超分后的视频帧序列