mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
EDVR C++部署示例
本目录下提供infer.cc
快速完成EDVR在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- 根据开发环境,下载预编译部署库和samples代码,参考FastDeploy预编译库
以Linux上EDVR推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在Fastdeploy C++预编译库下载CPU推理库)
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
# fastdeploy版本 >= 0.7.0
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/edvr/cpp/
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
make -j
# 下载EDVR模型文件和测试视频
wget https://bj.bcebos.com/paddlehub/fastdeploy/EDVR_M_wo_tsa_SRx4.tar
tar -xvf EDVR_M_wo_tsa_SRx4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU推理
./infer_demo EDVR_M_wo_tsa_SRx4 vsr_src.mp4 0 2
# GPU推理
./infer_demo EDVR_M_wo_tsa_SRx4 vsr_src.mp4 1 2
# GPU上TensorRT推理
./infer_demo EDVR_M_wo_tsa_SRx4 vsr_src.mp4 2 2
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
EDVR C++接口
EDVR类
fastdeploy::vision::sr::EDVR(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
EDVR模型加载和初始化,其中model_file为导出的Paddle模型格式。
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为Paddle格式
Predict函数
EDVR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results)
模型预测接口,输入图像直接输出检测结果。
参数
- imgs: 输入视频帧序列,注意需为HWC,BGR格式
- results: 视频超分结果,超分后的视频帧序列