mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* 更正代码格式 * 更正代码格式 * 修复语法错误 * fix rk error * update * update * update * update * update * update * update Co-authored-by: Jason <jiangjiajun@baidu.com>
159 lines
5.2 KiB
C++
159 lines
5.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <numeric>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "fastdeploy/core/allocate.h"
|
|
#include "fastdeploy/core/fd_scalar.h"
|
|
#include "fastdeploy/core/fd_type.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
struct FASTDEPLOY_DECL FDTensor {
|
|
// These two parameters are general parameters of quantitative model.
|
|
std::pair<int32_t, std::vector<float>> quantized_parameter_ = {0, {0}};
|
|
void SetQuantizationInfo(int32_t zero_point, std::vector<float>& scale);
|
|
const std::pair<int32_t, std::vector<float>> GetQuantizationInfo() const;
|
|
|
|
// std::vector<int8_t> data;
|
|
void* buffer_ = nullptr;
|
|
std::vector<int64_t> shape = {0};
|
|
std::string name = "";
|
|
FDDataType dtype = FDDataType::INT8;
|
|
|
|
// This use to skip memory copy step
|
|
// the external_data_ptr will point to the user allocated memory
|
|
// user has to maintain the memory, allocate and release
|
|
void* external_data_ptr = nullptr;
|
|
// The internal data will be on CPU
|
|
// Some times, the external data is on the GPU, and we are going to use
|
|
// GPU to inference the model
|
|
// so we can skip data transfer, which may improve the efficience
|
|
Device device = Device::CPU;
|
|
// By default the device id of FDTensor is -1, which means this value is
|
|
// invalid, and FDTensor is using the same device id as Runtime.
|
|
int device_id = -1;
|
|
|
|
// Whether the data buffer is in pinned memory, which is allocated
|
|
// with cudaMallocHost()
|
|
bool is_pinned_memory = false;
|
|
|
|
// if the external data is not on CPU, we use this temporary buffer
|
|
// to transfer data to CPU at some cases we need to visit the
|
|
// other devices' data
|
|
std::vector<int8_t> temporary_cpu_buffer;
|
|
|
|
// Get data buffer pointer
|
|
void* MutableData();
|
|
|
|
void* Data();
|
|
|
|
bool IsShared() { return external_data_ptr != nullptr; }
|
|
|
|
void StopSharing();
|
|
|
|
const void* Data() const;
|
|
|
|
// Use this data to get the tensor data to process
|
|
// Since the most senario is process data in CPU
|
|
// this function will return a pointer to cpu memory
|
|
// buffer.
|
|
// If the original data is on other device, the data
|
|
// will copy to cpu store in `temporary_cpu_buffer`
|
|
const void* CpuData() const;
|
|
|
|
// Set user memory buffer for Tensor, the memory is managed by
|
|
// the user it self, but the Tensor will share the memory with user
|
|
// So take care with the user buffer
|
|
void SetExternalData(const std::vector<int64_t>& new_shape,
|
|
const FDDataType& data_type, void* data_buffer,
|
|
const Device& new_device = Device::CPU,
|
|
int new_device_id = -1);
|
|
|
|
// Expand the shape of a Tensor. Insert a new axis that will appear
|
|
// at the `axis` position in the expanded Tensor shape.
|
|
void ExpandDim(int64_t axis = 0);
|
|
|
|
// Squeeze the shape of a Tensor. Erase the axis that will appear
|
|
// at the `axis` position in the squeezed Tensor shape.
|
|
void Squeeze(int64_t axis = 0);
|
|
|
|
// Initialize Tensor
|
|
// Include setting attribute for tensor
|
|
// and allocate cpu memory buffer
|
|
void Allocate(const std::vector<int64_t>& new_shape,
|
|
const FDDataType& data_type,
|
|
const std::string& tensor_name = "",
|
|
const Device& new_device = Device::CPU);
|
|
|
|
// Total size of tensor memory buffer in bytes
|
|
int Nbytes() const;
|
|
|
|
// Total number of elements in this tensor
|
|
int Numel() const;
|
|
|
|
// Get shape of FDTensor
|
|
std::vector<int64_t> Shape() const { return shape; }
|
|
|
|
// Get dtype of FDTensor
|
|
FDDataType Dtype() const { return dtype; }
|
|
|
|
void Resize(size_t nbytes);
|
|
|
|
void Resize(const std::vector<int64_t>& new_shape);
|
|
|
|
void Resize(const std::vector<int64_t>& new_shape,
|
|
const FDDataType& data_type, const std::string& tensor_name = "",
|
|
const Device& new_device = Device::CPU);
|
|
|
|
bool Reshape(const std::vector<int64_t>& new_shape);
|
|
// Debug function
|
|
// Use this function to print shape, dtype, mean, max, min
|
|
// prefix will also be printed as tag
|
|
void PrintInfo(const std::string& prefix = "TensorInfo: ") const;
|
|
|
|
bool ReallocFn(size_t nbytes);
|
|
|
|
void FreeFn();
|
|
|
|
FDTensor() {}
|
|
explicit FDTensor(const std::string& tensor_name);
|
|
explicit FDTensor(const char* tensor_name);
|
|
|
|
// Deep copy
|
|
FDTensor(const FDTensor& other);
|
|
// Move constructor
|
|
FDTensor(FDTensor&& other);
|
|
|
|
// Deep copy assignment
|
|
FDTensor& operator=(const FDTensor& other);
|
|
// Move assignment
|
|
FDTensor& operator=(FDTensor&& other);
|
|
|
|
// Scalar to FDTensor
|
|
explicit FDTensor(const Scalar& scalar);
|
|
|
|
~FDTensor() { FreeFn(); }
|
|
|
|
static void CopyBuffer(void* dst, const void* src, size_t nbytes,
|
|
const Device& device = Device::CPU,
|
|
bool is_pinned_memory = false);
|
|
};
|
|
|
|
} // namespace fastdeploy
|