mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
343 lines
11 KiB
C++
343 lines
11 KiB
C++
/*
|
|
* Copyright (c) 1993-2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef BATCH_STREAM_H
|
|
#define BATCH_STREAM_H
|
|
|
|
#include "NvInfer.h"
|
|
#include "common.h"
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
|
|
class IBatchStream {
|
|
public:
|
|
virtual void reset(int firstBatch) = 0;
|
|
virtual bool next() = 0;
|
|
virtual void skip(int skipCount) = 0;
|
|
virtual float* getBatch() = 0;
|
|
virtual float* getLabels() = 0;
|
|
virtual int getBatchesRead() const = 0;
|
|
virtual int getBatchSize() const = 0;
|
|
virtual nvinfer1::Dims getDims() const = 0;
|
|
};
|
|
|
|
class MNISTBatchStream : public IBatchStream {
|
|
public:
|
|
MNISTBatchStream(int batchSize, int maxBatches, const std::string& dataFile,
|
|
const std::string& labelsFile,
|
|
const std::vector<std::string>& directories)
|
|
: mBatchSize{batchSize}, mMaxBatches{maxBatches}, mDims{3, {1, 28, 28}}
|
|
//!< We already know the dimensions of MNIST images.
|
|
{
|
|
readDataFile(locateFile(dataFile, directories));
|
|
readLabelsFile(locateFile(labelsFile, directories));
|
|
}
|
|
|
|
void reset(int firstBatch) override { mBatchCount = firstBatch; }
|
|
|
|
bool next() override {
|
|
if (mBatchCount >= mMaxBatches) {
|
|
return false;
|
|
}
|
|
++mBatchCount;
|
|
return true;
|
|
}
|
|
|
|
void skip(int skipCount) override { mBatchCount += skipCount; }
|
|
|
|
float* getBatch() override {
|
|
return mData.data() +
|
|
(mBatchCount * mBatchSize * samplesCommon::volume(mDims));
|
|
}
|
|
|
|
float* getLabels() override {
|
|
return mLabels.data() + (mBatchCount * mBatchSize);
|
|
}
|
|
|
|
int getBatchesRead() const override { return mBatchCount; }
|
|
|
|
int getBatchSize() const override { return mBatchSize; }
|
|
|
|
nvinfer1::Dims getDims() const override {
|
|
return Dims{4, {mBatchSize, mDims.d[0], mDims.d[1], mDims.d[2]}};
|
|
}
|
|
|
|
private:
|
|
void readDataFile(const std::string& dataFilePath) {
|
|
std::ifstream file{dataFilePath.c_str(), std::ios::binary};
|
|
|
|
int magicNumber, numImages, imageH, imageW;
|
|
file.read(reinterpret_cast<char*>(&magicNumber), sizeof(magicNumber));
|
|
// All values in the MNIST files are big endian.
|
|
magicNumber = samplesCommon::swapEndianness(magicNumber);
|
|
ASSERT(magicNumber == 2051 &&
|
|
"Magic Number does not match the expected value for an MNIST image "
|
|
"set");
|
|
|
|
// Read number of images and dimensions
|
|
file.read(reinterpret_cast<char*>(&numImages), sizeof(numImages));
|
|
file.read(reinterpret_cast<char*>(&imageH), sizeof(imageH));
|
|
file.read(reinterpret_cast<char*>(&imageW), sizeof(imageW));
|
|
|
|
numImages = samplesCommon::swapEndianness(numImages);
|
|
imageH = samplesCommon::swapEndianness(imageH);
|
|
imageW = samplesCommon::swapEndianness(imageW);
|
|
|
|
// The MNIST data is made up of unsigned bytes, so we need to cast to float
|
|
// and normalize.
|
|
int numElements = numImages * imageH * imageW;
|
|
std::vector<uint8_t> rawData(numElements);
|
|
file.read(reinterpret_cast<char*>(rawData.data()),
|
|
numElements * sizeof(uint8_t));
|
|
mData.resize(numElements);
|
|
std::transform(rawData.begin(), rawData.end(), mData.begin(),
|
|
[](uint8_t val) { return static_cast<float>(val) / 255.f; });
|
|
}
|
|
|
|
void readLabelsFile(const std::string& labelsFilePath) {
|
|
std::ifstream file{labelsFilePath.c_str(), std::ios::binary};
|
|
int magicNumber, numImages;
|
|
file.read(reinterpret_cast<char*>(&magicNumber), sizeof(magicNumber));
|
|
// All values in the MNIST files are big endian.
|
|
magicNumber = samplesCommon::swapEndianness(magicNumber);
|
|
ASSERT(magicNumber == 2049 &&
|
|
"Magic Number does not match the expected value for an MNIST labels "
|
|
"file");
|
|
|
|
file.read(reinterpret_cast<char*>(&numImages), sizeof(numImages));
|
|
numImages = samplesCommon::swapEndianness(numImages);
|
|
|
|
std::vector<uint8_t> rawLabels(numImages);
|
|
file.read(reinterpret_cast<char*>(rawLabels.data()),
|
|
numImages * sizeof(uint8_t));
|
|
mLabels.resize(numImages);
|
|
std::transform(rawLabels.begin(), rawLabels.end(), mLabels.begin(),
|
|
[](uint8_t val) { return static_cast<float>(val); });
|
|
}
|
|
|
|
int mBatchSize{0};
|
|
int mBatchCount{
|
|
0}; //!< The batch that will be read on the next invocation of next()
|
|
int mMaxBatches{0};
|
|
Dims mDims{};
|
|
std::vector<float> mData{};
|
|
std::vector<float> mLabels{};
|
|
};
|
|
|
|
class BatchStream : public IBatchStream {
|
|
public:
|
|
BatchStream(int batchSize, int maxBatches, std::string prefix,
|
|
std::string suffix, std::vector<std::string> directories)
|
|
: mBatchSize(batchSize), mMaxBatches(maxBatches), mPrefix(prefix),
|
|
mSuffix(suffix), mDataDir(directories) {
|
|
FILE* file = fopen(
|
|
locateFile(mPrefix + std::string("0") + mSuffix, mDataDir).c_str(),
|
|
"rb");
|
|
ASSERT(file != nullptr);
|
|
int d[4];
|
|
size_t readSize = fread(d, sizeof(int), 4, file);
|
|
ASSERT(readSize == 4);
|
|
mDims.nbDims = 4; // The number of dimensions.
|
|
mDims.d[0] = d[0]; // Batch Size
|
|
mDims.d[1] = d[1]; // Channels
|
|
mDims.d[2] = d[2]; // Height
|
|
mDims.d[3] = d[3]; // Width
|
|
ASSERT(mDims.d[0] > 0 && mDims.d[1] > 0 && mDims.d[2] > 0 &&
|
|
mDims.d[3] > 0);
|
|
fclose(file);
|
|
|
|
mImageSize = mDims.d[1] * mDims.d[2] * mDims.d[3];
|
|
mBatch.resize(mBatchSize * mImageSize, 0);
|
|
mLabels.resize(mBatchSize, 0);
|
|
mFileBatch.resize(mDims.d[0] * mImageSize, 0);
|
|
mFileLabels.resize(mDims.d[0], 0);
|
|
reset(0);
|
|
}
|
|
|
|
BatchStream(int batchSize, int maxBatches, std::string prefix,
|
|
std::vector<std::string> directories)
|
|
: BatchStream(batchSize, maxBatches, prefix, ".batch", directories) {}
|
|
|
|
BatchStream(int batchSize, int maxBatches, nvinfer1::Dims dims,
|
|
std::string listFile, std::vector<std::string> directories)
|
|
: mBatchSize(batchSize), mMaxBatches(maxBatches), mDims(dims),
|
|
mListFile(listFile), mDataDir(directories) {
|
|
mImageSize = mDims.d[1] * mDims.d[2] * mDims.d[3];
|
|
mBatch.resize(mBatchSize * mImageSize, 0);
|
|
mLabels.resize(mBatchSize, 0);
|
|
mFileBatch.resize(mDims.d[0] * mImageSize, 0);
|
|
mFileLabels.resize(mDims.d[0], 0);
|
|
reset(0);
|
|
}
|
|
|
|
// Resets data members
|
|
void reset(int firstBatch) override {
|
|
mBatchCount = 0;
|
|
mFileCount = 0;
|
|
mFileBatchPos = mDims.d[0];
|
|
skip(firstBatch);
|
|
}
|
|
|
|
// Advance to next batch and return true, or return false if there is no batch
|
|
// left.
|
|
bool next() override {
|
|
if (mBatchCount == mMaxBatches) {
|
|
return false;
|
|
}
|
|
|
|
for (int csize = 1, batchPos = 0; batchPos < mBatchSize;
|
|
batchPos += csize, mFileBatchPos += csize) {
|
|
ASSERT(mFileBatchPos > 0 && mFileBatchPos <= mDims.d[0]);
|
|
if (mFileBatchPos == mDims.d[0] && !update()) {
|
|
return false;
|
|
}
|
|
|
|
// copy the smaller of: elements left to fulfill the request, or elements
|
|
// left in the file buffer.
|
|
csize = std::min(mBatchSize - batchPos, mDims.d[0] - mFileBatchPos);
|
|
std::copy_n(getFileBatch() + mFileBatchPos * mImageSize,
|
|
csize * mImageSize, getBatch() + batchPos * mImageSize);
|
|
std::copy_n(getFileLabels() + mFileBatchPos, csize,
|
|
getLabels() + batchPos);
|
|
}
|
|
mBatchCount++;
|
|
return true;
|
|
}
|
|
|
|
// Skips the batches
|
|
void skip(int skipCount) override {
|
|
if (mBatchSize >= mDims.d[0] && mBatchSize % mDims.d[0] == 0 &&
|
|
mFileBatchPos == mDims.d[0]) {
|
|
mFileCount += skipCount * mBatchSize / mDims.d[0];
|
|
return;
|
|
}
|
|
|
|
int x = mBatchCount;
|
|
for (int i = 0; i < skipCount; i++) {
|
|
next();
|
|
}
|
|
mBatchCount = x;
|
|
}
|
|
|
|
float* getBatch() override { return mBatch.data(); }
|
|
|
|
float* getLabels() override { return mLabels.data(); }
|
|
|
|
int getBatchesRead() const override { return mBatchCount; }
|
|
|
|
int getBatchSize() const override { return mBatchSize; }
|
|
|
|
nvinfer1::Dims getDims() const override { return mDims; }
|
|
|
|
private:
|
|
float* getFileBatch() { return mFileBatch.data(); }
|
|
|
|
float* getFileLabels() { return mFileLabels.data(); }
|
|
|
|
bool update() {
|
|
if (mListFile.empty()) {
|
|
std::string inputFileName = locateFile(
|
|
mPrefix + std::to_string(mFileCount++) + mSuffix, mDataDir);
|
|
FILE* file = fopen(inputFileName.c_str(), "rb");
|
|
if (!file) {
|
|
return false;
|
|
}
|
|
|
|
int d[4];
|
|
size_t readSize = fread(d, sizeof(int), 4, file);
|
|
ASSERT(readSize == 4);
|
|
ASSERT(mDims.d[0] == d[0] && mDims.d[1] == d[1] && mDims.d[2] == d[2] &&
|
|
mDims.d[3] == d[3]);
|
|
size_t readInputCount =
|
|
fread(getFileBatch(), sizeof(float), mDims.d[0] * mImageSize, file);
|
|
ASSERT(readInputCount == size_t(mDims.d[0] * mImageSize));
|
|
size_t readLabelCount =
|
|
fread(getFileLabels(), sizeof(float), mDims.d[0], file);
|
|
ASSERT(readLabelCount == 0 || readLabelCount == size_t(mDims.d[0]));
|
|
|
|
fclose(file);
|
|
} else {
|
|
std::vector<std::string> fNames;
|
|
std::ifstream file(locateFile(mListFile, mDataDir), std::ios::binary);
|
|
if (!file) {
|
|
return false;
|
|
}
|
|
|
|
sample::gLogInfo << "Batch #" << mFileCount << std::endl;
|
|
file.seekg(((mBatchCount * mBatchSize)) * 7);
|
|
|
|
for (int i = 1; i <= mBatchSize; i++) {
|
|
std::string sName;
|
|
std::getline(file, sName);
|
|
sName = sName + ".ppm";
|
|
sample::gLogInfo << "Calibrating with file " << sName << std::endl;
|
|
fNames.emplace_back(sName);
|
|
}
|
|
|
|
mFileCount++;
|
|
|
|
const int imageC = 3;
|
|
const int imageH = 300;
|
|
const int imageW = 300;
|
|
std::vector<samplesCommon::PPM<imageC, imageH, imageW>> ppms(
|
|
fNames.size());
|
|
for (uint32_t i = 0; i < fNames.size(); ++i) {
|
|
readPPMFile(locateFile(fNames[i], mDataDir), ppms[i]);
|
|
}
|
|
|
|
std::vector<float> data(samplesCommon::volume(mDims));
|
|
const float scale = 2.0 / 255.0;
|
|
const float bias = 1.0;
|
|
long int volChl = mDims.d[2] * mDims.d[3];
|
|
|
|
// Normalize input data
|
|
for (int i = 0, volImg = mDims.d[1] * mDims.d[2] * mDims.d[3];
|
|
i < mBatchSize; ++i) {
|
|
for (int c = 0; c < mDims.d[1]; ++c) {
|
|
for (int j = 0; j < volChl; ++j) {
|
|
data[i * volImg + c * volChl + j] =
|
|
scale * float(ppms[i].buffer[j * mDims.d[1] + c]) - bias;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::copy_n(data.data(), mDims.d[0] * mImageSize, getFileBatch());
|
|
}
|
|
|
|
mFileBatchPos = 0;
|
|
return true;
|
|
}
|
|
|
|
int mBatchSize{0};
|
|
int mMaxBatches{0};
|
|
int mBatchCount{0};
|
|
int mFileCount{0};
|
|
int mFileBatchPos{0};
|
|
int mImageSize{0};
|
|
std::vector<float> mBatch; //!< Data for the batch
|
|
std::vector<float> mLabels; //!< Labels for the batch
|
|
std::vector<float> mFileBatch; //!< List of image files
|
|
std::vector<float> mFileLabels; //!< List of label files
|
|
std::string mPrefix; //!< Batch file name prefix
|
|
std::string mSuffix; //!< Batch file name suffix
|
|
nvinfer1::Dims mDims; //!< Input dimensions
|
|
std::string mListFile; //!< File name of the list of image names
|
|
std::vector<std::string>
|
|
mDataDir; //!< Directories where the files can be found
|
|
};
|
|
|
|
#endif
|