mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 21:02:24 +08:00
393 lines
15 KiB
Python
393 lines
15 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import asyncio
|
|
import aiozmq
|
|
import json
|
|
from aiozmq import zmq
|
|
from asyncio import FIRST_COMPLETED, AbstractEventLoop, Task
|
|
import time
|
|
from collections.abc import AsyncGenerator, AsyncIterator
|
|
from collections.abc import Sequence as GenericSequence
|
|
from typing import Optional, Union, cast, TypeVar, List
|
|
import uuid
|
|
from fastapi import Request
|
|
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ErrorResponse,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionStreamResponse,
|
|
CompletionResponseStreamChoice,
|
|
CompletionResponseChoice,
|
|
UsageInfo,
|
|
DeltaToolCall,
|
|
DeltaFunctionCall,
|
|
ToolCall,
|
|
FunctionCall
|
|
)
|
|
from fastdeploy.utils import api_server_logger
|
|
from fastdeploy.engine.request import RequestOutput
|
|
|
|
|
|
class OpenAIServingCompletion:
|
|
def __init__(self, engine_client, pid):
|
|
self.engine_client = engine_client
|
|
self.pid = pid
|
|
|
|
async def create_completion(self, request: CompletionRequest):
|
|
"""
|
|
Create a completion for the given prompt.
|
|
"""
|
|
created_time = int(time.time())
|
|
if request.user is not None:
|
|
request_id = f"cmpl-{request.user}-{uuid.uuid4()}"
|
|
else:
|
|
request_id = f"cmpl-{uuid.uuid4()}"
|
|
api_server_logger.info(f"initialize request {request_id}")
|
|
request_prompt_ids = None
|
|
request_prompts = None
|
|
try:
|
|
if isinstance(request.prompt, str):
|
|
request_prompts = [request.prompt]
|
|
elif isinstance(request.prompt, list) and all(isinstance(item, int) for item in request.prompt):
|
|
request_prompt_ids = [request.prompt]
|
|
elif isinstance(request.prompt, list) and all(isinstance(item, str) for item in request.prompt):
|
|
request_prompts = request.prompt
|
|
elif isinstance(request.prompt, list):
|
|
for item in request.prompt:
|
|
if isinstance(item, list) and all(isinstance(x, int) for x in item):
|
|
continue
|
|
else:
|
|
raise ValueError("Prompt must be a string, a list of strings or a list of integers.")
|
|
request_prompt_ids = request.prompt
|
|
else:
|
|
raise ValueError("Prompt must be a string, a list of strings or a list of integers.")
|
|
except Exception as e:
|
|
return ErrorResponse(message=str(e), code=400)
|
|
|
|
if request_prompt_ids is not None:
|
|
request_prompts = request_prompt_ids
|
|
num_choices = len(request_prompts)
|
|
|
|
api_server_logger.info(f"start inference for request {num_choices}")
|
|
prompt_batched_token_ids = []
|
|
try:
|
|
for idx, prompt in enumerate(request_prompts):
|
|
request_id_idx = f"{request_id}-{idx}"
|
|
current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
|
|
try:
|
|
current_req_dict["arrival_time"] = time.time()
|
|
prompt_batched_token_ids.append(
|
|
self.engine_client.format_and_add_data(current_req_dict)
|
|
)
|
|
except Exception as e:
|
|
return ErrorResponse(message=str(e), code=400)
|
|
|
|
del current_req_dict
|
|
|
|
if request.stream:
|
|
return self.completion_stream_generator(
|
|
request=request,
|
|
num_choices = num_choices,
|
|
request_id=request_id,
|
|
created_time=created_time,
|
|
model_name=request.model,
|
|
prompt_batched_token_ids=prompt_batched_token_ids
|
|
)
|
|
else:
|
|
try:
|
|
return await self.completion_full_generator(
|
|
request=request,
|
|
num_choices=num_choices,
|
|
request_id=request_id,
|
|
created_time=created_time,
|
|
model_name=request.model,
|
|
prompt_batched_token_ids=prompt_batched_token_ids
|
|
)
|
|
except Exception as e:
|
|
return ErrorResponse(code=400, message=str(e))
|
|
|
|
except Exception as e:
|
|
return ErrorResponse(message=str(e), code=400)
|
|
|
|
|
|
async def completion_full_generator(
|
|
self,
|
|
request: CompletionRequest,
|
|
num_choices: int,
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
prompt_batched_token_ids: list()
|
|
):
|
|
"""
|
|
Process the full completion request with multiple choices.
|
|
"""
|
|
dealer = None
|
|
try:
|
|
request_ids = [f"{request_id}-{i}" for i in range(num_choices)]
|
|
# create dealer
|
|
dealer = await aiozmq.create_zmq_stream(
|
|
zmq.DEALER,
|
|
connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
|
|
)
|
|
|
|
for rid in request_ids:
|
|
dealer.write([b"", rid.encode("utf-8")])
|
|
|
|
valid_results = [dict()] * num_choices
|
|
output_tokens = [0] * num_choices
|
|
current_waiting_time = 0
|
|
while num_choices > 0:
|
|
try:
|
|
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
|
current_waiting_time = 0
|
|
except asyncio.TimeoutError:
|
|
current_waiting_time += 10
|
|
if current_waiting_time == 300:
|
|
status, msg = self.engine_client.check_health()
|
|
if not status:
|
|
raise ValueError(f"Engine is not healthy: {msg}")
|
|
else:
|
|
current_waiting_time = 0
|
|
await asyncio.sleep(0.1)
|
|
continue
|
|
data = json.loads(raw_data[-1].decode("utf-8"))
|
|
rid = int(data["request_id"].split("-")[-1])
|
|
if data.get("error_code", 200) != 200:
|
|
raise ValueError("{}".format(data["error_msg"]))
|
|
|
|
self.engine_client.data_processor.process_response_dict(
|
|
data, stream=False)
|
|
output_tokens[rid] += len(data["outputs"]["token_ids"])
|
|
if data.get("finished", False):
|
|
data["output_token_ids"] = output_tokens[rid]
|
|
valid_results[rid] = data
|
|
num_choices -= 1
|
|
|
|
return self.request_output_to_completion_response(
|
|
final_res_batch=valid_results,
|
|
request=request,
|
|
request_id=request_id,
|
|
created_time=created_time,
|
|
model_name=model_name,
|
|
prompt_batched_token_ids=prompt_batched_token_ids
|
|
)
|
|
except Exception as e:
|
|
api_server_logger.error(
|
|
f"Error in completion_full_generator: {e}", exc_info=True
|
|
)
|
|
raise
|
|
finally:
|
|
if dealer is not None:
|
|
dealer.close()
|
|
|
|
|
|
async def completion_stream_generator(
|
|
self,
|
|
request: CompletionRequest,
|
|
num_choices: int,
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
prompt_batched_token_ids: list()
|
|
):
|
|
"""
|
|
Process the stream completion request.
|
|
"""
|
|
try:
|
|
dealer = await aiozmq.create_zmq_stream(
|
|
zmq.DEALER,
|
|
connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
|
|
)
|
|
|
|
for i in range(num_choices):
|
|
req_id = f"{request_id}-{i}"
|
|
dealer.write([b"", req_id.encode('utf-8')]) # 发送多路请求
|
|
output_tokens = [0] * num_choices
|
|
inference_start_time = [0] * num_choices
|
|
first_iteration = [True] * num_choices
|
|
max_streaming_response_tokens = 1
|
|
if request.suffix is not None and request.suffix.get("max_streaming_response_tokens", 1) > 1:
|
|
max_streaming_response_tokens = request.suffix["max_streaming_response_tokens"]
|
|
choices = []
|
|
|
|
current_waiting_time = 0
|
|
while num_choices > 0:
|
|
try:
|
|
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
|
current_waiting_time = 0
|
|
except asyncio.TimeoutError:
|
|
current_waiting_time += 10
|
|
if current_waiting_time == 300:
|
|
status, msg = self.engine_client.check_health()
|
|
if not status:
|
|
raise ValueError(f"Engine is not healthy: {msg}")
|
|
else:
|
|
current_waiting_time = 0
|
|
await asyncio.sleep(0.1)
|
|
continue
|
|
|
|
|
|
res = json.loads(raw_data[-1].decode('utf-8'))
|
|
idx = int(res["request_id"].split("-")[-1])
|
|
if res.get("error_code", 200) != 200:
|
|
raise ValueError("{}".format(res["error_msg"]))
|
|
|
|
if first_iteration[idx]:
|
|
if request.suffix is not None and request.suffix.get("training", False):
|
|
chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[CompletionResponseStreamChoice(
|
|
index=idx,
|
|
text="",
|
|
token_ids=list(prompt_batched_token_ids[idx])
|
|
)]
|
|
)
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
first_iteration[idx] = False
|
|
|
|
|
|
self.engine_client.data_processor.process_response_dict(
|
|
res, stream=True)
|
|
if res['metrics'].get('first_token_time') is not None:
|
|
arrival_time = res['metrics']['first_token_time']
|
|
inference_start_time[idx] = res['metrics']['inference_start_time']
|
|
else:
|
|
arrival_time = res['metrics']['arrival_time'] - inference_start_time[idx]
|
|
# api_server_logger.info(f"{arrival_time}")
|
|
|
|
output = res["outputs"]
|
|
|
|
choices.append(CompletionResponseStreamChoice(
|
|
index=idx,
|
|
text=output["text"],
|
|
token_ids=output.get("token_ids"),
|
|
tool_calls=output.get("tool_call_content"),
|
|
reasoning_content=output.get("reasoning_content"),
|
|
arrival_time=arrival_time
|
|
))
|
|
if res["finished"]:
|
|
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
|
|
chunk.choices[0].finish_reason = "stop"
|
|
if self.engine_client.reasoning_parser == "ernie_x1" and \
|
|
output.get("finish_reason", "") == "tool_calls":
|
|
chunk.choices[0].finish_reason = "tool_calls"
|
|
else:
|
|
chunk.choices[0].finish_reason = "length"
|
|
|
|
output_tokens[idx] += 1
|
|
|
|
if len(choices) == max_streaming_response_tokens or res["finished"]:
|
|
chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=choices
|
|
)
|
|
choices = []
|
|
|
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
|
|
if res["finished"]:
|
|
num_choices -= 1
|
|
if getattr(request, "stream_options", None) and request.stream_options.include_usage:
|
|
usage_chunk = CompletionStreamResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=[],
|
|
usage=UsageInfo(
|
|
prompt_tokens=len(prompt_batched_token_ids[idx]),
|
|
completion_tokens=output_tokens[idx]
|
|
)
|
|
)
|
|
yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
|
|
|
|
|
|
except Exception as e:
|
|
yield f"data: {ErrorResponse(message=str(e), code=400).model_dump_json(exclude_unset=True)}\n\n"
|
|
finally:
|
|
del request
|
|
if dealer is not None:
|
|
dealer.close()
|
|
yield "data: [DONE]\n\n"
|
|
|
|
|
|
def request_output_to_completion_response(
|
|
self,
|
|
final_res_batch: List[RequestOutput],
|
|
request: CompletionRequest,
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
prompt_batched_token_ids: list()
|
|
) -> CompletionResponse:
|
|
choices: List[CompletionResponseChoice] = []
|
|
num_prompt_tokens = 0
|
|
num_generated_tokens = 0
|
|
|
|
for idx in range(len(final_res_batch)):
|
|
final_res = final_res_batch[idx]
|
|
prompt_token_ids = prompt_batched_token_ids[idx]
|
|
assert prompt_token_ids is not None
|
|
prompt_text = final_res["prompt"]
|
|
|
|
output = final_res["outputs"]
|
|
if request.echo:
|
|
assert prompt_text is not None
|
|
if request.max_tokens == 0:
|
|
token_ids = prompt_token_ids
|
|
output_text = prompt_text
|
|
else:
|
|
token_ids = [*prompt_token_ids, *output["token_ids"]]
|
|
output_text = prompt_text + output["text"]
|
|
else:
|
|
token_ids = output["token_ids"]
|
|
output_text = output["text"]
|
|
|
|
choice_data = CompletionResponseChoice(
|
|
index=len(choices),
|
|
text=output_text,
|
|
reasoning_content=output.get('reasoning_content'),
|
|
tool_calls=output.get("tool_call_content"),
|
|
logprobs=None,
|
|
finish_reason=None
|
|
)
|
|
choices.append(choice_data)
|
|
|
|
num_generated_tokens += final_res["output_token_ids"]
|
|
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
completion_tokens=num_generated_tokens,
|
|
total_tokens=num_prompt_tokens + num_generated_tokens,
|
|
)
|
|
del request
|
|
|
|
return CompletionResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
choices=choices,
|
|
usage=usage,
|
|
)
|