Files
FastDeploy/fastdeploy/input/qwen_vl_processor.py
Sunny-bot1 c68c3c4b8b [Feature] bad words support v1 scheduler and specifiy token ids (#3608)
* support bad_words_token_ids

* docs

* fix test

* fix

* bad words support kvcache v1 and token ids

* fix
2025-08-25 20:14:51 -07:00

297 lines
11 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import numpy as np
from fastdeploy.engine.request import Request
from fastdeploy.input.qwen_mm_processor import DataProcessor
from fastdeploy.input.text_processor import DataProcessor as TextProcessor
from fastdeploy.utils import data_processor_logger
class QwenVLProcessor(TextProcessor):
"""
Qwen Vision-Language processor for handling multimodal inputs.
This processor extends TextProcessor to support:
- Image and video processing
- Multimodal feature extraction
- Tokenization and position encoding
- Request processing and model input generation
Attributes:
processor (DataProcessor): Underlying data processor instance
tokenizer: Text tokenizer instance
limit_mm_per_prompt (dict): Limits for multimodal inputs per prompt
"""
def __init__(
self,
config,
model_name_or_path,
limit_mm_per_prompt=None,
mm_processor_kwargs=None,
reasoning_parser_obj=None,
tool_parser_obj=None,
):
"""
Initialize QwenVLProcessor instance.
Args:
config: Model configuration object
model_name_or_path (str): Pretrained model name or path
limit_mm_per_prompt (dict, optional): Limits for multimodal inputs
mm_processor_kwargs (dict, optional): Multimodal processor arguments
reasoning_parser_obj: Reasoning parser instance
tool_parser_obj: Tool parser instance
"""
super().__init__(model_name_or_path, reasoning_parser_obj, tool_parser_obj)
data_processor_logger.info(f"model_name_or_path: {model_name_or_path}")
processor_kwargs = self._parse_processor_kwargs(mm_processor_kwargs)
self.processor = DataProcessor(
model_path=model_name_or_path,
tokens_per_second=config.vision_config.tokens_per_second,
tokenizer=self.tokenizer,
**processor_kwargs,
)
self.limit_mm_per_prompt = self._parse_limits(limit_mm_per_prompt)
def process_request(self, request, max_model_len=None, **kwargs):
"""
Process incoming request and generate model inputs.
Args:
request: Input request object
max_model_len (int, optional): Maximum context length
**kwargs: Additional processing parameters
Returns:
Request: Processed request with model inputs
"""
task = request.to_dict()
task["enable_thinking"] = kwargs.get("enable_thinking", False)
self.process_request_dict(task, max_model_len)
request = Request.from_dict(task)
request = self._apply_default_parameters(request)
return request
def _parse_processor_kwargs(self, kwargs):
"""
Parse and validate multimodal processor arguments.
Args:
kwargs (dict): Processor configuration arguments
Returns:
dict: Validated processor arguments
Raises:
ValueError: If arguments format is invalid
"""
if not kwargs:
return {}
try:
if not isinstance(kwargs, dict):
raise ValueError("mm-processor-kwargs must be a dictionary")
# Validate kwargs types against expected schema
data_processor_logger.info(f"Processing kwargs: {kwargs}")
expected_types = {
"video_max_frames": int, # Maximum video frames parameter
"video_min_frames": int, # Minimum video frames parameter
}
for key, value in kwargs.items():
if key in expected_types and not isinstance(value, expected_types[key]):
raise ValueError(
f"Invalid type for {key}: expected {expected_types[key].__name__}, got {type(value).__name__}"
)
return kwargs
except Exception as e:
data_processor_logger.warning(f"Invalid mm-processor-kwargs format: {e}")
return {}
def _parse_limits(self, limits):
"""
Parse and validate multimodal input limits.
Args:
limits (dict): Input limits configuration
Returns:
dict: Validated limits with defaults
Raises:
ValueError: If limits format is invalid
"""
DEFAULT_LIMITS = {"image": 1, "video": 1, "audio": 1}
if not limits:
return DEFAULT_LIMITS
try:
if not isinstance(limits, dict):
raise ValueError("limit-mm-per-prompt must be a dictionary")
data_processor_logger.info(f"_parse_limits:{limits}")
return {**DEFAULT_LIMITS, **limits}
except Exception as e:
data_processor_logger.warning(f"Invalid limit-mm-per-prompt format: {e}, using default limits")
return DEFAULT_LIMITS
def _check_mm_limits(self, item):
"""
Validate multimodal inputs against configured limits.
Args:
item: Input request item to validate
Raises:
ValueError: If input exceeds configured limits
"""
if isinstance(item, dict):
# 请求包含prompt和multi_modal_data
mm_data = item
else:
# 请求包含messages
mm_data = {"image": [], "video": []}
for message in item:
if isinstance(message.get("content"), list):
for part in message["content"]:
if part.get("type") in ["image_url", "image"]:
mm_data["image"].append(part)
elif part.get("type") in ["video_url", "video"]:
mm_data["video"].append(part)
for modality, data in mm_data.items():
if modality in self.limit_mm_per_prompt:
limit = self.limit_mm_per_prompt[modality]
if len(data) > limit:
raise ValueError(f"Too many {modality} items in prompt, " f"got {len(data)} but limit is {limit}")
def process_request_dict(self, request, max_model_len=None):
"""
Process request dictionary into model inputs.
Args:
request (dict): Input request dictionary
max_model_len (int, optional): Maximum context length
Returns:
dict: Processed request with model inputs
Raises:
ValueError: If request format is invalid
"""
request = self._apply_default_parameters(request)
if not request.get("eos_token_ids"):
request["eos_token_ids"] = self.eos_token_ids
stop_sequences = request.get("stop", [])
if stop_sequences:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request["stop_token_ids"] = stop_seqs
request["stop_seqs_len"] = stop_seqs_len
bad_words = request.get("bad_words")
bad_words_token_ids = request.get("bad_words_token_ids")
if bad_words:
bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
request["bad_words_token_ids"] = bad_words_token_ids
if request.get("prompt"):
multimodal_data = request.get("multimodal_data")
if multimodal_data is None:
multimodal_data = {}
self._check_mm_limits(multimodal_data)
images = multimodal_data.get("image", None)
videos = multimodal_data.get("video", None)
outputs = self.processor.text2ids(request["prompt"], images, videos)
elif request.get("messages"):
messages = request["messages"]
self._check_mm_limits(messages)
outputs = self.processor.request2ids(request)
else:
raise ValueError(f"Request must contain 'prompt', or 'messages': {request}")
metadata = request.get("metadata")
# Handle continuation of previous generation by appending existing tokens
if metadata and metadata.get("generated_token_ids"):
self.append_generated_tokens(outputs, metadata["generated_token_ids"])
outputs = self.pack_outputs(outputs)
request["prompt_token_ids"] = outputs["input_ids"].tolist()
request["prompt_token_ids_len"] = len(request["prompt_token_ids"])
request["multimodal_inputs"] = outputs
# Handle prompt truncation if exceeds model context length
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
request["prompt_token_ids"] = request["prompt_token_ids"][
: max_model_len - 1
] # Leave space for at least 1 new token
# Set default max_tokens if not specified
if request.get("max_tokens") is None:
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"])) # Ensure at least 1 token
data_processor_logger.info(f"Processed request {request}")
return request
def append_generated_tokens(self, outputs, generated_token_ids):
"""
Append generated tokens to existing outputs.
Args:
outputs: Current model outputs
generated_token_ids: Generated tokens to append
"""
out = {"input_ids": [], "token_type_ids": [], "position_ids": [], "cur_position": outputs["cur_position"]}
self.processor._add_text(generated_token_ids, out)
outputs["input_ids"] = np.concatenate(
[outputs["input_ids"], np.array(out["input_ids"], dtype=np.int64)], axis=0
)
outputs["token_type_ids"] = np.concatenate(
[outputs["token_type_ids"], np.array(out["token_type_ids"], dtype=np.int64)], axis=0
)
outputs["position_ids"] = np.concatenate(
[outputs["position_ids"], out["position_ids"][0]], axis=1, dtype=np.int64
)
outputs["cur_position"] = out["cur_position"]
def pack_outputs(self, outputs):
"""
Prepare final output dictionary for model.
Args:
outputs: Intermediate processing outputs
Returns:
dict: Packed output dictionary with all required fields
"""
outputs["image_patch_id"] = self.processor.image_token_id
outputs["video_patch_id"] = self.processor.video_token_id
outputs["position_ids"] = outputs["position_ids"].transpose(1, 0)
return outputs