Files
FastDeploy/python/fastdeploy/vision/common/manager.py
guxukai c6480de736 [CVCUDA] Vision Processor Python API and Tutorial (#1394)
* bind success

* bind success fix

* FDMat pybind, ResizeByShort pybind

* FDMat pybind, ResizeByShort pybind, remove initialized_

* override BindProcessorManager::Run in python is available

* PyProcessorManager done

* vision_pybind fix

* manager.py fix

* add tutorials

* remove Apply() bind

* remove Apply() bind and fix

* fix reviewed problem

* fix reviewed problem

* fix reviewed problem readme

* fix reviewed problem readme etc

* apply return outputs

* nits

* update readme

* fix FDMatbatch

* add op pybind: CenterCrop, Pad

* add op overload for pass FDMatBatch

---------

Co-authored-by: Wang Xinyu <shaywxy@gmail.com>
2023-03-10 14:42:32 +08:00

70 lines
2.1 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from abc import ABC, abstractmethod
from ... import c_lib_wrap as C
class ProcessorManager:
def __init__(self):
self._manager = None
def run(self, input_ims):
"""Process input image
:param: input_ims: (list of numpy.ndarray) The input images
:return: list of FDTensor
"""
return self._manager.run(input_ims)
def use_cuda(self, enable_cv_cuda=False, gpu_id=-1):
"""Use CUDA processors
:param: enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only
:param: gpu_id: GPU device id
"""
return self._manager.use_cuda(enable_cv_cuda, gpu_id)
class PyProcessorManager(ABC):
"""
PyProcessorManager is used to define a customized processor in python
"""
def __init__(self):
self._manager = C.vision.processors.ProcessorManager()
def use_cuda(self, enable_cv_cuda=False, gpu_id=-1):
"""Use CUDA processors
:param: enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only
:param: gpu_id: GPU device id
"""
return self._manager.use_cuda(enable_cv_cuda, gpu_id)
def __call__(self, images):
image_batch = C.vision.FDMatBatch()
image_batch.from_mats(images)
self._manager.pre_apply(image_batch)
outputs = self.apply(image_batch)
self._manager.post_apply()
return outputs
@abstractmethod
def apply(self, image_batch):
print("This function has to be implemented.")
return []