mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* [cmake] support Android arm64-v8a & armeabi-v7a native c++ sdk * [cmake] fixed patchelf download on mac and android * [lite] Add threads and power_mode option support * [pybind] update runtime pybind for lite power mode * [python] Add set_lite_power_mode api to runtime
156 lines
5.4 KiB
C++
156 lines
5.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/backends/lite/lite_backend.h"
|
|
|
|
#include <cstring>
|
|
|
|
namespace fastdeploy {
|
|
|
|
// Convert data type from paddle lite to fastdeploy
|
|
FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype) {
|
|
if (dtype == paddle::lite_api::PrecisionType::kFloat) {
|
|
return FDDataType::FP32;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt8) {
|
|
return FDDataType::INT8;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt32) {
|
|
return FDDataType::INT32;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt64) {
|
|
return FDDataType::INT64;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt16) {
|
|
return FDDataType::INT16;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kUInt8) {
|
|
return FDDataType::UINT8;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kFP64) {
|
|
return FDDataType::FP64;
|
|
}
|
|
FDASSERT(false, "Unexpected data type of %d.", dtype);
|
|
return FDDataType::FP32;
|
|
}
|
|
|
|
void LiteBackend::BuildOption(const LiteBackendOption& option) {
|
|
std::vector<paddle::lite_api::Place> valid_places;
|
|
valid_places.push_back(
|
|
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFloat)});
|
|
config_.set_valid_places(valid_places);
|
|
if (option.threads > 0) {
|
|
config_.set_threads(option.threads);
|
|
}
|
|
if (option.power_mode > 0) {
|
|
config_.set_power_mode(
|
|
static_cast<paddle::lite_api::PowerMode>(option.power_mode));
|
|
}
|
|
}
|
|
|
|
bool LiteBackend::InitFromPaddle(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const LiteBackendOption& option) {
|
|
if (initialized_) {
|
|
FDERROR << "LiteBackend is already initialized, cannot initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
config_.set_model_file(model_file);
|
|
config_.set_param_file(params_file);
|
|
BuildOption(option);
|
|
predictor_ =
|
|
paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::CxxConfig>(
|
|
config_);
|
|
|
|
inputs_desc_.clear();
|
|
outputs_desc_.clear();
|
|
inputs_order_.clear();
|
|
std::vector<std::string> input_names = predictor_->GetInputNames();
|
|
std::vector<std::string> output_names = predictor_->GetOutputNames();
|
|
for (size_t i = 0; i < input_names.size(); ++i) {
|
|
inputs_order_[input_names[i]] = i;
|
|
TensorInfo info;
|
|
auto tensor = predictor_->GetInput(i);
|
|
auto shape = tensor->shape();
|
|
info.shape.assign(shape.begin(), shape.end());
|
|
info.name = input_names[i];
|
|
info.dtype = LiteDataTypeToFD(tensor->precision());
|
|
inputs_desc_.emplace_back(info);
|
|
}
|
|
for (size_t i = 0; i < output_names.size(); ++i) {
|
|
TensorInfo info;
|
|
auto tensor = predictor_->GetOutput(i);
|
|
auto shape = tensor->shape();
|
|
info.shape.assign(shape.begin(), shape.end());
|
|
info.name = output_names[i];
|
|
info.dtype = LiteDataTypeToFD(tensor->precision());
|
|
outputs_desc_.emplace_back(info);
|
|
}
|
|
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
TensorInfo LiteBackend::GetInputInfo(int index) {
|
|
FDASSERT(index < NumInputs(),
|
|
"The index: %d should less than the number of inputs: %d.", index,
|
|
NumInputs());
|
|
return inputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> LiteBackend::GetInputInfos() { return inputs_desc_; }
|
|
|
|
TensorInfo LiteBackend::GetOutputInfo(int index) {
|
|
FDASSERT(index < NumOutputs(),
|
|
"The index: %d should less than the number of outputs %d.", index,
|
|
NumOutputs());
|
|
return outputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> LiteBackend::GetOutputInfos() { return outputs_desc_; }
|
|
|
|
bool LiteBackend::Infer(std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs) {
|
|
if (inputs.size() != inputs_desc_.size()) {
|
|
FDERROR << "[LiteBackend] Size of inputs(" << inputs.size()
|
|
<< ") should keep same with the inputs of this model("
|
|
<< inputs_desc_.size() << ")." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
auto iter = inputs_order_.find(inputs[i].name);
|
|
if (iter == inputs_order_.end()) {
|
|
FDERROR << "Cannot find input with name:" << inputs[i].name
|
|
<< " in loaded model." << std::endl;
|
|
return false;
|
|
}
|
|
auto tensor = predictor_->GetInput(iter->second);
|
|
tensor->Resize(inputs[i].shape);
|
|
tensor->ShareExternalMemory(const_cast<void*>(inputs[i].CpuData()),
|
|
inputs[i].Nbytes(),
|
|
paddle::lite_api::TargetType::kARM);
|
|
}
|
|
|
|
predictor_->Run();
|
|
|
|
outputs->resize(outputs_desc_.size());
|
|
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
|
auto tensor = predictor_->GetOutput(i);
|
|
(*outputs)[i].Resize(tensor->shape(), outputs_desc_[i].dtype,
|
|
outputs_desc_[i].name);
|
|
memcpy((*outputs)[i].MutableData(), tensor->data<void>(),
|
|
(*outputs)[i].Nbytes());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace fastdeploy
|