Files
FastDeploy/fastdeploy/vision/classification/contrib/resnet.cc
Jason f2fed7959b [Other] Add namespace for functions (#538)
Add namespace for functions
2022-11-09 13:57:53 +08:00

135 lines
4.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/contrib/resnet.h"
#include "fastdeploy/vision/utils/utils.h"
#include "fastdeploy/utils/perf.h"
namespace fastdeploy {
namespace vision {
namespace classification {
ResNet::ResNet(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
// In constructor, the 3 steps below are necessary.
// 1. set the Backend 2. set RuntimeOption 3. call Initialize()
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool ResNet::Initialize() {
// In this function, the 3 steps below are necessary.
// 1. assign values to the global variables 2. call InitRuntime()
size = {224, 224};
mean_vals = {0.485f, 0.456f, 0.406f};
std_vals = {0.229f, 0.224f, 0.225f};
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool ResNet::Preprocess(Mat* mat, FDTensor* output) {
// In this function, the preprocess need be implemented according to the original Repos,
// The result of preprocess has to be saved in FDTensor variable, because the input of Infer() need to be std::vector<FDTensor>.
// 1. Resize 2. BGR2RGB 3. Normalize 4. HWC2CHW 5. Put the result into FDTensor variable.
if (mat->Height()!=size[0] || mat->Width()!=size[1]){
int interp = cv::INTER_LINEAR;
Resize::Run(mat, size[1], size[0], -1, -1, interp);
}
BGR2RGB::Run(mat);
Normalize::Run(mat, mean_vals, std_vals);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool ResNet::Postprocess(FDTensor& infer_result,
ClassifyResult* result, int topk) {
// In this function, the postprocess need be implemented according to the original Repos,
// Finally the reslut of postprocess should be saved in ClassifyResult variable.
// 1. Softmax 2. Choose topk labels 3. Put the result into ClassifyResult variable.
int num_classes = infer_result.shape[1];
function::Softmax(infer_result, &infer_result);
const float* infer_result_buffer = reinterpret_cast<float*>(infer_result.Data());
topk = std::min(num_classes, topk);
result->label_ids =
utils::TopKIndices(infer_result_buffer, num_classes, topk);
result->scores.resize(topk);
for (int i = 0; i < topk; ++i) {
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
}
return true;
}
bool ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
// In this function, the Preprocess(), Infer(), and Postprocess() are called sequentially.
Mat mat(*im);
std::vector<FDTensor> processed_data(1);
if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
processed_data[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(processed_data, &output_tensors)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!Postprocess(output_tensors[0], result, topk)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy