mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 42d14e7119
			
		
	
	42d14e7119
	
	
	
		
			
			* fit yolov7face file path * TODO:添加yolov7facePython接口Predict * resolve yolov7face.py * resolve yolov7face.py * resolve yolov7face.py * add yolov7face example readme file * [Doc] fix yolov7face example readme file * [Doc]fix yolov7face example readme file * support BlazeFace * add blazeface readme file * fix review problem * fix code style error * fix review problem * fix review problem * fix head file problem * fix review problem * fix review problem * fix readme file problem * add English readme file * fix English readme file
		
			
				
	
	
		
			59 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--model", required=True, help="Path of blazeface model dir.")
 | |
|     parser.add_argument(
 | |
|         "--image", required=True, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default='cpu',
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--use_trt",
 | |
|         type=ast.literal_eval,
 | |
|         default=False,
 | |
|         help="Wether to use tensorrt.")
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
|     option = fd.RuntimeOption()
 | |
| 
 | |
|     if args.device.lower() == "gpu":
 | |
|         option.use_gpu()
 | |
| 
 | |
|     if args.use_trt:
 | |
|         option.use_trt_backend()
 | |
|         option.set_trt_input_shape("images", [1, 3, 640, 640])
 | |
|     return option
 | |
| 
 | |
| 
 | |
| args = parse_arguments()
 | |
| 
 | |
| model_dir = args.model
 | |
| 
 | |
| model_file = os.path.join(model_dir, "model.pdmodel")
 | |
| params_file = os.path.join(model_dir, "model.pdiparams")
 | |
| config_file = os.path.join(model_dir, "infer_cfg.yml")
 | |
| 
 | |
| # Configure runtime and load the model
 | |
| runtime_option = build_option(args)
 | |
| model = fd.vision.facedet.BlazeFace(model_file, params_file, config_file, runtime_option=runtime_option)
 | |
| 
 | |
| # Predict image detection results
 | |
| im = cv2.imread(args.image)
 | |
| result = model.predict(im)
 | |
| print(result)
 | |
| # Visualization of prediction Results
 | |
| vis_im = fd.vision.vis_face_detection(im, result)
 | |
| cv2.imwrite("visualized_result.jpg", vis_im)
 | |
| print("Visualized result save in ./visualized_result.jpg")
 |