mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Co-authored-by: liqinrui <liqinrui@baidu.com>
713 lines
29 KiB
Python
713 lines
29 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import inspect
|
|
import os
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
from http import HTTPStatus
|
|
|
|
import numpy as np
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.config import ModelConfig
|
|
from fastdeploy.entrypoints.openai.utils import DealerConnectionManager
|
|
from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS
|
|
from fastdeploy.eplb.utils import RedundantExpertWorkload
|
|
from fastdeploy.input.preprocess import InputPreprocessor
|
|
from fastdeploy.inter_communicator import IPCSignal, RearrangeExpertStatus, ZmqIpcClient
|
|
from fastdeploy.metrics.work_metrics import work_process_metrics
|
|
from fastdeploy.multimodal.registry import MultimodalRegistry
|
|
from fastdeploy.platforms import current_platform
|
|
from fastdeploy.utils import EngineError, StatefulSemaphore, api_server_logger
|
|
|
|
|
|
class EngineClient:
|
|
"""
|
|
EngineClient is a class that handles the communication between the client and the server.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_or_path,
|
|
tokenizer,
|
|
max_model_len,
|
|
tensor_parallel_size,
|
|
pid,
|
|
port,
|
|
limit_mm_per_prompt,
|
|
mm_processor_kwargs,
|
|
config,
|
|
# enable_mm=False,
|
|
reasoning_parser=None,
|
|
data_parallel_size=1,
|
|
enable_logprob=False,
|
|
workers=1,
|
|
tool_parser=None,
|
|
enable_prefix_caching=None,
|
|
):
|
|
import fastdeploy.model_executor.models # noqa: F401
|
|
|
|
self.config = config
|
|
architectures = ModelConfig({"model": model_name_or_path}).architectures[0]
|
|
self.enable_prefix_caching = enable_prefix_caching
|
|
if MultimodalRegistry.contains_model(architectures):
|
|
self.enable_mm = True
|
|
else:
|
|
self.enable_mm = False
|
|
|
|
if self.enable_mm and self.enable_prefix_caching:
|
|
from fastdeploy.cache_manager.cache_data import (
|
|
is_mm_model_disable_prefix_cache,
|
|
)
|
|
|
|
self.disable_prefix_mm = is_mm_model_disable_prefix_cache(architectures)
|
|
|
|
input_processor = InputPreprocessor(
|
|
tokenizer,
|
|
reasoning_parser,
|
|
limit_mm_per_prompt,
|
|
mm_processor_kwargs,
|
|
self.enable_mm,
|
|
tool_parser,
|
|
)
|
|
self.enable_logprob = enable_logprob
|
|
self.reasoning_parser = reasoning_parser
|
|
self.data_processor = input_processor.create_processor()
|
|
self.max_model_len = max_model_len
|
|
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
|
|
|
if tensor_parallel_size <= max_chips_per_node:
|
|
self.is_master = True
|
|
else:
|
|
self.is_master = False
|
|
|
|
if self.config.eplb_config.enable_eplb and self.config.parallel_config.expert_parallel_rank == 0:
|
|
self.init_eplb_signals(ipc_signal_suffix=port)
|
|
|
|
array_size = min(max_chips_per_node, tensor_parallel_size)
|
|
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
|
|
self.worker_healthy_live_signal = IPCSignal(
|
|
name="worker_healthy_live_signal",
|
|
array=self.worker_healthy_live_recorded_time_array,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
|
|
model_weights_status = np.zeros([1], dtype=np.int32)
|
|
self.model_weights_status_signal = IPCSignal(
|
|
name="model_weights_status",
|
|
array=model_weights_status,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
self.connection_manager = DealerConnectionManager(
|
|
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
|
|
)
|
|
self.connection_initialized = False
|
|
|
|
def init_eplb_signals(self, ipc_signal_suffix):
|
|
"""
|
|
Initialize eplb signals.
|
|
"""
|
|
self.signal_clear_experts_token_stats_list = []
|
|
self.local_experts_token_stats_array_list = []
|
|
self.expert_tokens_stats_array_list = []
|
|
self.signal_update_weight_from_disk_array_list = []
|
|
self.update_weight_from_disk_result_list = []
|
|
rearrange_experts_status = np.zeros([1], dtype=np.int32)
|
|
self.rearrange_experts_signal = IPCSignal(
|
|
name="rearrange_experts_status",
|
|
array=rearrange_experts_status,
|
|
dtype=np.int32,
|
|
suffix=ipc_signal_suffix,
|
|
create=False,
|
|
)
|
|
|
|
rearrange_experts_ips_size_array = np.zeros([1], dtype=np.int32)
|
|
self.rearrange_experts_ips_size_signal = IPCSignal(
|
|
name="rearrange_experts_ips_size",
|
|
array=rearrange_experts_ips_size_array,
|
|
dtype=np.int32,
|
|
suffix=ipc_signal_suffix,
|
|
create=False,
|
|
)
|
|
|
|
self.shm_rearrange_experts_ips_list = IPCSignal(
|
|
name="rearrange_experts_ips_list",
|
|
shm_size=self.config.eplb_config.redundant_expert_ip_shm_size,
|
|
suffix=ipc_signal_suffix,
|
|
create=False,
|
|
)
|
|
|
|
signal_update_weight_from_tensor = np.zeros([1], dtype=np.int32)
|
|
self.signal_update_weight_from_tensor_array = IPCSignal(
|
|
name="signal_update_weight_from_tensor",
|
|
array=signal_update_weight_from_tensor,
|
|
dtype=np.int32,
|
|
suffix=ipc_signal_suffix,
|
|
create=False,
|
|
)
|
|
|
|
if envs.FD_ENABLE_MULTI_API_SERVER:
|
|
engine_worker_suffix = [
|
|
self.config.parallel_config.engine_worker_queue_port[
|
|
self.config.parallel_config.local_data_parallel_id
|
|
]
|
|
]
|
|
else:
|
|
engine_worker_suffix = self.config.parallel_config.engine_worker_queue_port
|
|
|
|
for suffix_port in engine_worker_suffix:
|
|
signal_clear_experts_token_stats = np.zeros([1], dtype=np.int32)
|
|
self.signal_clear_experts_token_stats_list.append(
|
|
IPCSignal(
|
|
name="signal_clear_experts_token_stats",
|
|
array=signal_clear_experts_token_stats,
|
|
dtype=np.int32,
|
|
suffix=suffix_port,
|
|
create=False,
|
|
)
|
|
)
|
|
|
|
signal_update_weight_from_disk = np.zeros([1], dtype=np.int32)
|
|
self.signal_update_weight_from_disk_array_list.append(
|
|
IPCSignal(
|
|
name="signal_update_weight_from_disk",
|
|
array=signal_update_weight_from_disk,
|
|
dtype=np.int32,
|
|
suffix=suffix_port,
|
|
create=False,
|
|
)
|
|
)
|
|
|
|
result_update_weight_from_disk = np.zeros([1], dtype=np.int32)
|
|
self.update_weight_from_disk_result_list.append(
|
|
IPCSignal(
|
|
name="result_update_weight_from_disk",
|
|
array=result_update_weight_from_disk,
|
|
dtype=np.int32,
|
|
suffix=suffix_port,
|
|
create=False,
|
|
)
|
|
)
|
|
|
|
experts_token_stats = np.zeros(
|
|
(self.config.model_config.num_hidden_layers, self.config.model_config.moe_num_experts),
|
|
dtype=np.int32,
|
|
)
|
|
self.expert_tokens_stats_array_list.append(
|
|
IPCSignal(
|
|
name="all_experts_token_stats",
|
|
array=experts_token_stats,
|
|
dtype=np.int32,
|
|
suffix=suffix_port,
|
|
create=False,
|
|
)
|
|
)
|
|
self.local_experts_token_stats_array_list.append(
|
|
IPCSignal(
|
|
name="local_experts_token_stats",
|
|
array=experts_token_stats,
|
|
dtype=np.int32,
|
|
suffix=suffix_port,
|
|
create=False,
|
|
)
|
|
)
|
|
|
|
def create_zmq_client(self, model, mode):
|
|
"""
|
|
Create a ZMQ client.
|
|
"""
|
|
self.zmq_client = ZmqIpcClient(model, mode)
|
|
self.zmq_client.connect()
|
|
|
|
async def format_and_add_data(self, prompts: dict):
|
|
"""
|
|
Format the request data and send the request to the server.
|
|
"""
|
|
if "request_id" not in prompts:
|
|
request_id = str(uuid.uuid4())
|
|
prompts["request_id"] = request_id
|
|
|
|
if "max_tokens" not in prompts:
|
|
prompts["max_tokens"] = self.max_model_len - 1
|
|
|
|
await self.add_requests(prompts)
|
|
return prompts["prompt_token_ids"]
|
|
|
|
def _check_mm_disable_prefix_cache(self, task):
|
|
is_multimodal_data = False
|
|
if self.disable_prefix_mm:
|
|
multimodal_inputs = task.get("multimodal_inputs", [])
|
|
if multimodal_inputs:
|
|
token_type_ids = multimodal_inputs.get("token_type_ids", [])
|
|
if token_type_ids:
|
|
is_multimodal_data = np.sum(token_type_ids) > 0
|
|
return is_multimodal_data
|
|
|
|
async def add_requests(self, task):
|
|
"""
|
|
Add a new request to the queue.
|
|
|
|
Args:
|
|
task: Request A dictionary representing the request.
|
|
sampling_params: A dictionary representing the sampling parameters.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
task["preprocess_start_time"] = time.time()
|
|
try:
|
|
if inspect.iscoroutinefunction(self.data_processor.process_request_dict):
|
|
await self.data_processor.process_request_dict(task, self.max_model_len)
|
|
else:
|
|
self.data_processor.process_request_dict(task, self.max_model_len)
|
|
|
|
if self.enable_mm and self.enable_prefix_caching:
|
|
if self._check_mm_disable_prefix_cache(task):
|
|
api_server_logger.error(
|
|
"The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache"
|
|
)
|
|
raise EngineError(
|
|
"The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache",
|
|
error_code=400,
|
|
)
|
|
|
|
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
|
|
input_ids_len = task["prompt_token_ids_len"]
|
|
|
|
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
|
|
min_tokens = task.get("min_tokens", 1)
|
|
if "messages" in task:
|
|
del task["messages"]
|
|
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
|
|
work_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
|
|
work_process_metrics.prompt_tokens_total.inc(input_ids_len)
|
|
work_process_metrics.request_prompt_tokens.observe(input_ids_len)
|
|
except Exception as e:
|
|
api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}")
|
|
raise EngineError(str(e), error_code=400)
|
|
|
|
if input_ids_len + min_tokens >= self.max_model_len:
|
|
error_msg = (
|
|
f"Input text is too long, input_ids_len ({input_ids_len}) "
|
|
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if input_ids_len > self.max_model_len:
|
|
error_msg = (
|
|
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if "stop_seqs_len" in task:
|
|
stop_seqs_len = task["stop_seqs_len"]
|
|
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
|
|
if len(stop_seqs_len) > max_stop_seqs_num:
|
|
error_msg = (
|
|
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
|
|
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
|
|
for single_stop_seq_len in stop_seqs_len:
|
|
if single_stop_seq_len > stop_seqs_max_len:
|
|
error_msg = (
|
|
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
|
|
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
task["preprocess_end_time"] = time.time()
|
|
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
|
|
api_server_logger.info(
|
|
f"Cache request with request_id ({task.get('request_id')}), "
|
|
f"preprocess time cost {preprocess_cost_time}"
|
|
)
|
|
|
|
self.vaild_parameters(task)
|
|
api_server_logger.debug(f"Recieve task: {task}")
|
|
try:
|
|
if not self.enable_mm:
|
|
self.zmq_client.send_json(task)
|
|
else:
|
|
self.zmq_client.send_pyobj(task)
|
|
except Exception as e:
|
|
api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}")
|
|
raise EngineError(str(e), error_code=400)
|
|
|
|
def vaild_parameters(self, data):
|
|
"""
|
|
Validate stream options
|
|
"""
|
|
|
|
if data.get("n") is not None:
|
|
if data["n"] != 1:
|
|
raise ValueError("n only support 1.")
|
|
|
|
if data.get("max_tokens") is not None:
|
|
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
|
|
raise ValueError(f"max_tokens can be defined [1, {self.max_model_len}).")
|
|
|
|
if data.get("reasoning_max_tokens") is not None:
|
|
if data["reasoning_max_tokens"] < 1:
|
|
raise ValueError("reasoning_max_tokens must be greater than 1")
|
|
if data["reasoning_max_tokens"] > data["max_tokens"]:
|
|
data["reasoning_max_tokens"] = data["max_tokens"]
|
|
api_server_logger.warning(
|
|
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to match that of max_tokens"
|
|
)
|
|
|
|
if data.get("top_p") is not None:
|
|
if data["top_p"] > 1 or data["top_p"] < 0:
|
|
raise ValueError("top_p value can only be defined [0, 1].")
|
|
|
|
if data.get("frequency_penalty") is not None:
|
|
if not -2.0 <= data["frequency_penalty"] <= 2.0:
|
|
raise ValueError("frequency_penalty must be in [-2, 2]")
|
|
|
|
if data.get("temperature") is not None:
|
|
if data["temperature"] < 0:
|
|
raise ValueError("temperature must be non-negative")
|
|
|
|
if data.get("presence_penalty") is not None:
|
|
if not -2.0 <= data["presence_penalty"] <= 2.0:
|
|
raise ValueError("presence_penalty must be in [-2, 2]")
|
|
|
|
if data.get("seed") is not None:
|
|
if not 0 <= data["seed"] <= 922337203685477580:
|
|
raise ValueError("seed must be in [0, 922337203685477580]")
|
|
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError("Stream options can only be defined when `stream=True`.")
|
|
|
|
# logprobs
|
|
logprobs = data.get("logprobs")
|
|
top_logprobs = None
|
|
|
|
if isinstance(logprobs, bool) and logprobs:
|
|
if not self.enable_logprob:
|
|
err_msg = "Logprobs is disabled, please enable it in startup config."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
top_logprobs = data.get("top_logprobs")
|
|
elif isinstance(logprobs, int):
|
|
top_logprobs = logprobs
|
|
elif logprobs:
|
|
raise ValueError("Invalid type for 'logprobs'")
|
|
|
|
# enable_logprob
|
|
if top_logprobs:
|
|
if not self.enable_logprob:
|
|
err_msg = "Logprobs is disabled, please enable it in startup config."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if not isinstance(top_logprobs, int):
|
|
err_type = type(top_logprobs).__name__
|
|
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if top_logprobs < 0:
|
|
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if top_logprobs > 20:
|
|
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
def check_health(self, time_interval_threashold=30):
|
|
"""
|
|
Check the health of the model server by checking whether all workers are alive.
|
|
|
|
"""
|
|
if self.worker_healthy_live_signal.value[0]:
|
|
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
|
|
if elapsed_time > time_interval_threashold:
|
|
return False, "Worker Service Not Healthy"
|
|
|
|
return True, ""
|
|
|
|
def is_workers_alive(self):
|
|
"""
|
|
Check the health of the model server by checking whether all workers are alive.
|
|
|
|
"""
|
|
if self.model_weights_status_signal.value[0] == 0:
|
|
return True, ""
|
|
else:
|
|
return False, "No model weight enabled"
|
|
|
|
def update_model_weight(self, timeout=300):
|
|
"""
|
|
Update the model weight by sending a signal to the server.
|
|
1 : worker receive the signal and start to update model weight
|
|
2 : worker update finish and notify client
|
|
"""
|
|
if self.model_weights_status_signal.value[0] == 0:
|
|
return True, ""
|
|
if self.model_weights_status_signal.value[0] == 1:
|
|
return False, "updating model weight already"
|
|
|
|
self.model_weights_status_signal.value[0] = 1
|
|
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
|
|
while self.model_weights_status_signal.value[0] != 0 and timeout != 0:
|
|
time.sleep(1)
|
|
timeout -= 1
|
|
continue
|
|
if self.model_weights_status_signal.value[0] != 0:
|
|
return False, "Update model weight timeout"
|
|
time.sleep(1)
|
|
return True, ""
|
|
|
|
def clear_load_weight(self, timeout=300):
|
|
"""
|
|
Clear the load weight status.
|
|
-1 : worker receive the signal and start to clear model weight
|
|
-2 : worker clear finish and notify client
|
|
"""
|
|
if self.model_weights_status_signal.value[0] == -2:
|
|
return True, ""
|
|
if self.model_weights_status_signal.value[0] == -1:
|
|
return False, "clearing model weight already"
|
|
|
|
self.model_weights_status_signal.value[0] = -1
|
|
|
|
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
|
|
while self.model_weights_status_signal.value[0] != -2 and timeout != 0:
|
|
time.sleep(1)
|
|
timeout -= 1
|
|
continue
|
|
if self.model_weights_status_signal.value[0] != -2:
|
|
return False, "clear model weight timeout"
|
|
time.sleep(1)
|
|
return True, ""
|
|
|
|
def check_model_weight_status(self):
|
|
return self.model_weights_status_signal.value[0] < 0
|
|
|
|
async def rearrange_experts(self, request_dict: dict):
|
|
"""
|
|
rearrange experts
|
|
Args:
|
|
request_dict (dict): request body
|
|
Returns:
|
|
tuple: response body, status code
|
|
"""
|
|
content, status_code = None, HTTPStatus.OK
|
|
eplb_config = self.config.eplb_config
|
|
|
|
if not eplb_config.enable_eplb:
|
|
content = {"code": 1, "msg": "redundant expert is disabled"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
if (
|
|
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
|
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
|
):
|
|
content = {"code": 1, "msg": "user or passwd is invalid"}
|
|
status_code = HTTPStatus.UNAUTHORIZED
|
|
return content, status_code
|
|
|
|
if self.config.parallel_config.expert_parallel_rank != 0:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual rank {self.config.parallel_config.expert_parallel_rank}, expect rank 0",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
action = request_dict.get("action", "")
|
|
api_server_logger.info(f"redundant_expert: rearrange_experts recv request, action {action}")
|
|
if action == "":
|
|
# action: start rearrange experts
|
|
# params: {'user': 'xxx', 'passwd': 'xxx', 'ips': ['10.54.99.77:8000', '10.54.99.77:8300']}
|
|
if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.FREE.value:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"rearrange is doing. actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.FREE.value}",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
if "ips" not in request_dict and content is None:
|
|
content = {"code": 1, "msg": "ips in request is None"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
|
|
if content is not None:
|
|
return content, status_code
|
|
|
|
data_bytes = (";".join(request_dict["ips"])).encode("utf-8")
|
|
data_size = len(data_bytes)
|
|
if data_size > eplb_config.redundant_expert_ip_shm_size:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual ips size {data_size}, max limit {eplb_config.redundant_expert_ip_shm_size}",
|
|
}
|
|
status_code = HTTPStatus.INTERNAL_SERVER_ERROR
|
|
else:
|
|
self.rearrange_experts_ips_size_signal.value[0] = data_size
|
|
self.shm_rearrange_experts_ips_list.shm.buf[:data_size] = data_bytes
|
|
content = {"code": 0, "msg": "ok"}
|
|
status_code = HTTPStatus.OK
|
|
return content, status_code
|
|
elif action == "recv_expert_weight":
|
|
# action: receive global expert workload, and begin update weight from disk
|
|
# params: {'user': 'xxx', 'passwd': 'xxx', 'weight': (layers, experts)}
|
|
if "data" not in request_dict or not isinstance(request_dict["data"], list):
|
|
content = {"code": 1, "msg": "data not in request or data is not a list"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
else:
|
|
weight = np.array(request_dict["data"], dtype=np.int32)
|
|
for idx in range(len(self.expert_tokens_stats_array_list)):
|
|
self.expert_tokens_stats_array_list[idx].value[:] = weight[:]
|
|
self.signal_update_weight_from_disk_array_list[idx].value[0] = 1
|
|
|
|
content = {"code": 0, "msg": "ok"}
|
|
status_code = HTTPStatus.OK
|
|
return content, status_code
|
|
elif action == "update_weight_from_tensor":
|
|
if self.cfg.scheduler_config.splitwise_role != "prefill" and content is None:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual role {self.cfg.scheduler_config.splitwise_role}, expect role prefill",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.LOAD_SUCC.value and content is None:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.LOAD_SUCC.value}",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
|
|
if content is None:
|
|
self.signal_update_weight_from_tensor_array.value[0] = 1
|
|
content = {"code": 0, "msg": "ok"}
|
|
status_code = HTTPStatus.OK
|
|
return content, status_code
|
|
else:
|
|
content = {"code": 1, "msg": f"invalid action {action}"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
async def get_per_expert_tokens_stats(self, request_dict: dict):
|
|
"""
|
|
get per expert tokens stats
|
|
|
|
Args:
|
|
request_dict (dict): request body
|
|
Returns:
|
|
tuple: response body, status code
|
|
"""
|
|
content, status_code = None, HTTPStatus.OK
|
|
eplb_config = self.config.eplb_config
|
|
|
|
if not eplb_config.enable_eplb:
|
|
content = {"code": 1, "msg": "redundant expert is disabled"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
if (
|
|
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
|
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
|
):
|
|
content = {"code": 1, "msg": "user or passwd is invalid"}
|
|
status_code = HTTPStatus.UNAUTHORIZED
|
|
return content, status_code
|
|
|
|
if self.config.parallel_config.expert_parallel_rank != 0:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual rank {self.config.parallel_config.expert_parallel_rank}, expect rank 0",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
if "clear_stat" in request_dict and request_dict["clear_stat"]:
|
|
for clear_experts_token_stats in self.signal_clear_experts_token_stats_list:
|
|
clear_experts_token_stats.value[0] = 1
|
|
|
|
local_experts_list = []
|
|
for local_experts_token_stats in self.local_experts_token_stats_array_list:
|
|
local_experts_list.append(local_experts_token_stats.value.tolist())
|
|
content = {"code": 0, "msg": "ok", "data": local_experts_list}
|
|
status_code = HTTPStatus.OK
|
|
return content, status_code
|
|
|
|
async def check_redundant(self, request_dict: dict):
|
|
"""
|
|
check redundant
|
|
Args:
|
|
request_dict (dict): request body
|
|
Returns:
|
|
tuple: response body, status code
|
|
"""
|
|
content, status_code = None, HTTPStatus.OK
|
|
eplb_config = self.config.eplb_config
|
|
|
|
if not eplb_config.enable_eplb:
|
|
content = {"code": 1, "msg": "redundant expert is disabled"}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
if (
|
|
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
|
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
|
):
|
|
content = {"code": 1, "msg": "user or passwd is invalid"}
|
|
status_code = HTTPStatus.UNAUTHORIZED
|
|
return content, status_code
|
|
|
|
if self.config.parallel_config.expert_parallel_rank != 0:
|
|
content = {
|
|
"code": 1,
|
|
"msg": f"actual rank {self.config.parallel_config.expert_parallel_rank}, expect rank 0",
|
|
}
|
|
status_code = HTTPStatus.BAD_REQUEST
|
|
return content, status_code
|
|
|
|
action = request_dict.get("action", "")
|
|
if action == "":
|
|
status = "unknown"
|
|
try:
|
|
status = RearrangeExpertStatus(self.rearrange_experts_signal.value[0]).name
|
|
except:
|
|
pass
|
|
content = {"code": 0, "msg": "ok", "status": status}
|
|
get_workloads = False if "check_get_workloads" not in request_dict else request_dict["check_get_workloads"]
|
|
if get_workloads:
|
|
content["data"], content["msg"] = RedundantExpertWorkload(eplb_config.redundant_expert_meta_dir).load()
|
|
status_code = HTTPStatus.OK
|
|
elif action == "check_load_weight_result":
|
|
update_weight_from_disk_list = []
|
|
for update_weight_result in self.update_weight_from_disk_result_list:
|
|
update_weight_from_disk_list.append(update_weight_result.value[0].tolist())
|
|
content = {"code": 0, "msg": "ok", "data": update_weight_from_disk_list}
|
|
status_code = HTTPStatus.OK
|
|
return content, status_code
|