mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
290 lines
10 KiB
Python
290 lines
10 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
import paddle
|
|
from paddle.nn.functional import scaled_dot_product_attention
|
|
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
|
AttentionBackend,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
|
|
|
|
class PaddleNativeAttnBackend(AttentionBackend):
|
|
"""
|
|
The backend class that uses paddle native attention implementation.
|
|
Which is used only for testing purpose.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
|
"""Init the metadata for a forward pass."""
|
|
pass
|
|
|
|
def _run_sdpa_forward_extend(
|
|
self,
|
|
query: paddle.Tensor,
|
|
output: paddle.Tensor,
|
|
k_cache: paddle.Tensor,
|
|
v_cache: paddle.Tensor,
|
|
req_to_token: paddle.Tensor,
|
|
req_pool_indices: paddle.Tensor,
|
|
seq_lens: paddle.Tensor,
|
|
extend_prefix_lens: paddle.Tensor,
|
|
extend_seq_lens: paddle.Tensor,
|
|
causal: bool = False,
|
|
) -> paddle.Tensor:
|
|
"""Run the extend forward by using paddle native sdpa op.
|
|
|
|
Args:
|
|
query: [num_tokens, num_heads, head_size]
|
|
output: [num_tokens, num_heads, head_size]
|
|
k_cache: [max_total_num_tokens, num_heads, head_size]
|
|
v_cache: [max_total_num_tokens, num_heads, head_size]
|
|
req_to_token: [max_num_reqs, max_context_len]
|
|
req_pool_indices: [num_seqs]
|
|
seq_lens: [num_seqs]
|
|
extend_prefix_lens: [num_seqs]
|
|
extend_seq_lens: [num_seqs]
|
|
causal: bool
|
|
|
|
Returns:
|
|
output: [num_tokens, num_heads, head_size]
|
|
"""
|
|
|
|
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
|
|
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
|
|
|
|
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
|
# query = query.movedim(0, query.dim() - 2) =>
|
|
query = paddle.transpose(query, perm=[1, 0, 2])
|
|
|
|
start_q, start_kv = 0, 0
|
|
for seq_idx in range(seq_lens.shape[0]):
|
|
# TODO: this loop process a sequence per iter, this is inefficient.
|
|
# Need optimize the performance later.
|
|
|
|
extend_seq_len_q = extend_seq_lens[seq_idx]
|
|
prefill_seq_len_q = extend_prefix_lens[seq_idx]
|
|
|
|
seq_len_kv = seq_lens[seq_idx]
|
|
end_q = start_q + extend_seq_len_q
|
|
end_kv = start_kv + seq_len_kv
|
|
|
|
per_req_query = query[:, start_q:end_q, :]
|
|
per_req_query_redudant = paddle.empty(
|
|
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
|
|
dtype=per_req_query.dtype,
|
|
)
|
|
|
|
per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
|
|
|
|
# get key and value from cache. per_req_tokens contains the kv cache
|
|
# index for each token in the sequence.
|
|
req_pool_idx = req_pool_indices[seq_idx]
|
|
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
|
# per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
# per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
|
per_req_key = k_cache[per_req_tokens].transpose([query.dim() - 2, 0])
|
|
per_req_value = v_cache[per_req_tokens].transpose([query.dim() - 2, 0])
|
|
|
|
per_req_out_redudant = (
|
|
scaled_dot_product_attention(
|
|
per_req_query_redudant.unsqueeze(0),
|
|
per_req_key.unsqueeze(0),
|
|
per_req_value.unsqueeze(0),
|
|
is_causal=causal,
|
|
)
|
|
.squeeze(0)
|
|
.transpose([query.dim() - 2, 0])
|
|
)
|
|
output[start_q:end_q, :, :] = per_req_out_redudant[prefill_seq_len_q:, :, :]
|
|
start_q, start_kv = end_q, end_kv
|
|
return output
|
|
|
|
def _scaled_dot_product_attention(
|
|
self,
|
|
query: paddle.Tensor,
|
|
key: paddle.Tensor,
|
|
value: paddle.Tensor,
|
|
is_causal: bool = False,
|
|
) -> paddle.Tensor:
|
|
"""Paddle implementation of scaled dot-product attention."""
|
|
# query, key, value shape: [batch_size, num_heads, seq_len, head_size]
|
|
d_k = query.shape[-1]
|
|
scores = paddle.matmul(query, key.transpose([0, 1, 3, 2])) # QK^T
|
|
|
|
scores = scores / paddle.sqrt(paddle.to_tensor(d_k, dtype=scores.dtype))
|
|
if is_causal:
|
|
# Apply causal mask
|
|
q_len, k_len = scores.shape[-2], scores.shape[-1]
|
|
mask = paddle.triu(paddle.ones((q_len, k_len)) * -1e4, diagonal=1)
|
|
scores += mask.unsqueeze(0).unsqueeze(0)
|
|
|
|
attn_weights = paddle.nn.functional.softmax(scores, axis=-1)
|
|
output = paddle.matmul(attn_weights, value)
|
|
return output
|
|
|
|
def _run_sdpa_forward_decode(
|
|
self,
|
|
query: paddle.Tensor,
|
|
output: paddle.Tensor,
|
|
k_cache: paddle.Tensor,
|
|
v_cache: paddle.Tensor,
|
|
req_to_token: paddle.Tensor,
|
|
req_pool_indices: paddle.Tensor,
|
|
seq_lens: paddle.Tensor,
|
|
causal: bool = False,
|
|
) -> paddle.Tensor:
|
|
"""Run the decode forward by using paddle native sdpa op.
|
|
|
|
Args:
|
|
query: [num_tokens, num_heads, head_size]
|
|
output: [num_tokens, num_heads, head_size]
|
|
k_cache: [max_total_num_tokens, num_heads, head_size]
|
|
v_cache: [max_total_num_tokens, num_heads, head_size]
|
|
req_to_token: [max_num_reqs, max_context_len]
|
|
req_pool_indices: [num_seqs]
|
|
seq_lens: [num_seqs]
|
|
causal: bool
|
|
|
|
Returns:
|
|
output: [num_tokens, num_heads, head_size]
|
|
"""
|
|
|
|
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
|
query = query.transpose([1, 0, 2])
|
|
|
|
start_q, start_kv = 0, 0
|
|
for seq_idx in range(seq_lens.shape[0]):
|
|
# TODO: this loop process a sequence per iter, this is inefficient.
|
|
# Need optimize the performance later.
|
|
|
|
seq_len_q = 1
|
|
seq_len_kv = seq_lens[seq_idx]
|
|
end_q = start_q + seq_len_q
|
|
end_kv = start_kv + seq_len_kv
|
|
|
|
per_req_query = query[:, start_q:end_q, :]
|
|
|
|
# get key and value from cache. per_req_tokens contains the kv cache
|
|
# index for each token in the sequence.
|
|
req_pool_idx = req_pool_indices[seq_idx]
|
|
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
|
|
|
# [seq_len_kv, num_heads, head_size] -> [num_heads, seq_len_kv, head_size]
|
|
per_req_key = k_cache[per_req_tokens].transpose([query.dim() - 2, 0])
|
|
per_req_value = v_cache[per_req_tokens].transpose([query.dim() - 2, 0])
|
|
|
|
per_req_out = (
|
|
self._scaled_dot_product_attention(
|
|
per_req_query.unsqueeze(0),
|
|
per_req_key.unsqueeze(0),
|
|
per_req_value.unsqueeze(0),
|
|
is_causal=causal,
|
|
)
|
|
.squeeze(0)
|
|
.transpose([query.dim() - 2, 0])
|
|
)
|
|
output[start_q:end_q, :, :] = per_req_out
|
|
start_q, start_kv = end_q, end_kv
|
|
|
|
return output
|
|
|
|
def forward_extend(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
layer: paddle.nn.Layer,
|
|
forward_meta: ForwardMeta,
|
|
save_kv_cache: bool = True,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
|
|
"""
|
|
if layer.qk_head_dim != layer.v_head_dim:
|
|
o = q.new_empty((q.shape[0], layer.self.num_heads * layer.v_head_dim))
|
|
else:
|
|
o = paddle.empty_like(q)
|
|
|
|
if save_kv_cache:
|
|
forward_meta.token_to_kv_pool.set_kv_buffer(layer, forward_meta.out_cache_loc, k, v)
|
|
|
|
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
|
|
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
|
|
|
|
causal = True
|
|
|
|
self._run_sdpa_forward_extend(
|
|
q_,
|
|
o_,
|
|
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
|
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
|
forward_meta.req_to_token_pool.req_to_token,
|
|
forward_meta.req_pool_indices,
|
|
forward_meta.seq_lens,
|
|
forward_meta.extend_prefix_lens,
|
|
forward_meta.extend_seq_lens,
|
|
causal=causal,
|
|
)
|
|
return o
|
|
|
|
def forward_decode(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
layer: paddle.nn.Layer,
|
|
forward_meta: ForwardMeta,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Run the decoding attention forward by using paddle native sdpa op.
|
|
"""
|
|
q = q.reshape([-1, layer.self.num_heads * layer.qk_head_dim])
|
|
|
|
if layer.qk_head_dim != layer.v_head_dim:
|
|
o = q.new_empty((q.shape[0], layer.self.num_heads * layer.v_head_dim))
|
|
else:
|
|
o = paddle.empty_like(q)
|
|
|
|
forward_meta.token_to_kv_pool.set_kv_buffer(layer, forward_meta.out_cache_loc, k, v)
|
|
|
|
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
|
|
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
|
|
|
|
self._run_sdpa_forward_decode(
|
|
q_,
|
|
o_,
|
|
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
|
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
|
forward_meta.req_to_token_pool.req_to_token,
|
|
forward_meta.req_pool_indices,
|
|
forward_meta.seq_lens,
|
|
causal=False,
|
|
)
|
|
|
|
return o
|