mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
265 lines
11 KiB
Plaintext
265 lines
11 KiB
Plaintext
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "helper.h" // NOLINT
|
|
|
|
template <typename T, int VecSize>
|
|
__global__ void RebuildPaddingKernel(T *output_data,
|
|
const T *input_data,
|
|
const int *cum_offsets,
|
|
const int *seq_len_this_time,
|
|
const int *seq_len_decoder,
|
|
const int *seq_len_encoder,
|
|
const int max_input_length,
|
|
const int dim_embed,
|
|
const int elem_nums) {
|
|
using LoadT = AlignedVector<T, VecSize>;
|
|
LoadT src_vec;
|
|
const int global_idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
for (int i = global_idx * VecSize; i < elem_nums;
|
|
i += gridDim.x * blockDim.x * VecSize) {
|
|
const int bi = i / dim_embed;
|
|
const int bias_idx = i % dim_embed;
|
|
int seq_id = 0;
|
|
if (seq_len_this_time[bi] == 0) continue;
|
|
if (seq_len_decoder[bi] == 0 && seq_len_encoder[bi] == 0) continue;
|
|
// if encoder, get last token; just decoder, get first token.
|
|
if (seq_len_encoder[bi] > 0) seq_id = seq_len_encoder[bi] - 1;
|
|
const int ori_token_idx =
|
|
bi * max_input_length - cum_offsets[bi] + seq_id;
|
|
const int src_offset = ori_token_idx * dim_embed + bias_idx;
|
|
Load<T, VecSize>(&input_data[src_offset], &src_vec);
|
|
Store<T, VecSize>(src_vec, &output_data[i]);
|
|
}
|
|
}
|
|
|
|
template <typename T, int VecSize>
|
|
__global__ void RebuildAppendPaddingKernel(T *output_data,
|
|
const T *input_data,
|
|
const int *cum_offset,
|
|
const int *seq_len_this_time,
|
|
const int *seq_len_decoder,
|
|
const int *seq_len_encoder,
|
|
const int *output_padding_offset,
|
|
const int max_input_length,
|
|
const int dim_embed,
|
|
const int64_t output_elem_nums) {
|
|
AlignedVector<T, VecSize> src_vec;
|
|
const int64_t global_idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
for (int64_t i = global_idx * VecSize; i < output_elem_nums;
|
|
i += gridDim.x * blockDim.x * VecSize) {
|
|
const int out_token_id = i / dim_embed;
|
|
const int ori_token_id =
|
|
out_token_id + output_padding_offset[out_token_id];
|
|
const int bi = ori_token_id / max_input_length;
|
|
int seq_id = 0;
|
|
if (seq_len_this_time[bi] == 0) continue;
|
|
if (seq_len_decoder[bi] == 0 && seq_len_encoder[bi] == 0) continue;
|
|
// if encoder, get last token; just decoder, get first token.
|
|
if (seq_len_encoder[bi] > 0) seq_id = seq_len_encoder[bi] - 1;
|
|
|
|
const int input_token_id = ori_token_id - cum_offset[bi] + seq_id;
|
|
const int bias_idx = i % dim_embed;
|
|
|
|
Load<T, VecSize>(&input_data[input_token_id * dim_embed + bias_idx],
|
|
&src_vec);
|
|
Store<T, VecSize>(src_vec, &output_data[i]);
|
|
}
|
|
}
|
|
|
|
template <paddle::DataType D>
|
|
std::vector<paddle::Tensor> rebuild_padding(
|
|
const paddle::Tensor &tmp_out, // [token_num, dim_embed]
|
|
const paddle::Tensor &cum_offsets, // [bsz, 1]
|
|
const paddle::Tensor &seq_len_this_time,
|
|
const paddle::Tensor &seq_lens_decoder,
|
|
const paddle::Tensor &seq_lens_encoder,
|
|
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
|
int max_input_length) {
|
|
typedef PDTraits<D> traits_;
|
|
typedef typename traits_::DataType DataType_;
|
|
typedef typename traits_::data_t data_t;
|
|
|
|
#ifdef PADDLE_WITH_CUSTOM_DEVICE
|
|
auto dev_ctx = static_cast<const phi::CustomContext*>(paddle::experimental::DeviceContextPool::Instance().Get(tmp_out.place()));
|
|
auto cu_stream = dev_ctx->stream();
|
|
#else
|
|
auto cu_stream = tmp_out.stream();
|
|
#endif
|
|
std::vector<int64_t> tmp_out_shape = tmp_out.shape();
|
|
const int token_num = tmp_out_shape[0];
|
|
const int dim_embed = tmp_out_shape[1];
|
|
const int bsz = cum_offsets.shape()[0];
|
|
|
|
paddle::Tensor out;
|
|
if (output_padding_offset) {
|
|
int need_delete_token_num = 0;
|
|
auto seq_lens_encoder_cpu =
|
|
seq_lens_encoder.copy_to(paddle::CPUPlace(), true);
|
|
for (int i = 0; i < bsz; ++i) {
|
|
if (seq_lens_encoder_cpu.data<int>()[i] > 0) {
|
|
need_delete_token_num +=
|
|
seq_lens_encoder_cpu.data<int>()[i] - 1;
|
|
}
|
|
}
|
|
out = paddle::full({token_num - need_delete_token_num, dim_embed},
|
|
0,
|
|
D,
|
|
tmp_out.place());
|
|
} else {
|
|
out =
|
|
paddle::full({bsz, dim_embed}, 0, tmp_out.dtype(), tmp_out.place());
|
|
}
|
|
|
|
constexpr int PackSize = VEC_16B / sizeof(DataType_);
|
|
int elem_nums = out.numel();
|
|
int pack_num = elem_nums / PackSize;
|
|
const int blocksize = 128;
|
|
const int grid_size = (pack_num + blocksize - 1) / blocksize;
|
|
|
|
if (output_padding_offset) {
|
|
RebuildAppendPaddingKernel<DataType_, PackSize>
|
|
<<<grid_size, blocksize, 0, cu_stream>>>(
|
|
reinterpret_cast<DataType_ *>(out.data<data_t>()),
|
|
reinterpret_cast<const DataType_ *>(tmp_out.data<data_t>()),
|
|
cum_offsets.data<int>(),
|
|
seq_len_this_time.data<int>(),
|
|
seq_lens_decoder.data<int>(),
|
|
seq_lens_encoder.data<int>(),
|
|
output_padding_offset.get_ptr()->data<int>(),
|
|
max_input_length,
|
|
dim_embed,
|
|
elem_nums);
|
|
} else {
|
|
RebuildPaddingKernel<DataType_, PackSize>
|
|
<<<grid_size, blocksize, 0, cu_stream>>>(
|
|
reinterpret_cast<DataType_ *>(out.data<data_t>()),
|
|
reinterpret_cast<DataType_ *>(
|
|
const_cast<data_t *>(tmp_out.data<data_t>())),
|
|
cum_offsets.data<int>(),
|
|
seq_len_this_time.data<int>(),
|
|
seq_lens_decoder.data<int>(),
|
|
seq_lens_encoder.data<int>(),
|
|
max_input_length,
|
|
dim_embed,
|
|
elem_nums);
|
|
}
|
|
return {out};
|
|
}
|
|
|
|
paddle::Tensor RebuildPaddingFunc(
|
|
const paddle::Tensor &tmp_out, // [token_num, dim_embed]
|
|
const paddle::Tensor &cum_offsets, // [bsz, 1]
|
|
const paddle::Tensor &seq_len_this_time,
|
|
const paddle::Tensor &seq_lens_decoder,
|
|
const paddle::Tensor &seq_lens_encoder,
|
|
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
|
int max_input_length) {
|
|
switch (tmp_out.type()) {
|
|
case paddle::DataType::BFLOAT16: {
|
|
return rebuild_padding<paddle::DataType::BFLOAT16>(
|
|
tmp_out,
|
|
cum_offsets,
|
|
seq_len_this_time,
|
|
seq_lens_decoder,
|
|
seq_lens_encoder,
|
|
output_padding_offset,
|
|
max_input_length)[0];
|
|
}
|
|
case paddle::DataType::FLOAT16: {
|
|
return rebuild_padding<paddle::DataType::FLOAT16>(
|
|
tmp_out,
|
|
cum_offsets,
|
|
seq_len_this_time,
|
|
seq_lens_decoder,
|
|
seq_lens_encoder,
|
|
output_padding_offset,
|
|
max_input_length)[0];
|
|
}
|
|
case paddle::DataType::FLOAT32: {
|
|
return rebuild_padding<paddle::DataType::FLOAT32>(
|
|
tmp_out,
|
|
cum_offsets,
|
|
seq_len_this_time,
|
|
seq_lens_decoder,
|
|
seq_lens_encoder,
|
|
output_padding_offset,
|
|
max_input_length)[0];
|
|
}
|
|
default: {
|
|
PD_THROW(
|
|
"NOT supported data type. "
|
|
"Only float16, bfloat16 and float32 are supported. ");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<paddle::Tensor> RebuildPadding(
|
|
const paddle::Tensor &tmp_out, // [token_num, dim_embed]
|
|
const paddle::Tensor &cum_offsets, // [bsz, 1]
|
|
const paddle::Tensor &seq_len_this_time,
|
|
const paddle::Tensor &seq_lens_decoder,
|
|
const paddle::Tensor &seq_lens_encoder,
|
|
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
|
int max_input_length) {
|
|
return {RebuildPaddingFunc(tmp_out,
|
|
cum_offsets,
|
|
seq_len_this_time,
|
|
seq_lens_decoder,
|
|
seq_lens_encoder,
|
|
output_padding_offset,
|
|
max_input_length)};
|
|
}
|
|
|
|
std::vector<std::vector<int64_t>> RebuildPaddingInferShape(
|
|
const std::vector<int64_t> &tmp_out_shape,
|
|
const std::vector<int64_t> &cum_offsets_shape,
|
|
const std::vector<int64_t> &seq_len_this_time_shape,
|
|
const std::vector<int64_t> &seq_lens_decoder_shape,
|
|
const std::vector<int64_t> &seq_lens_encoder_shape,
|
|
const paddle::optional<std::vector<int64_t>> &output_padding_offset_shape) {
|
|
int64_t dim_embed = tmp_out_shape[1];
|
|
// whether speculative decoding
|
|
if (output_padding_offset_shape) {
|
|
return {{-1, dim_embed}};
|
|
} else {
|
|
int64_t bsz = cum_offsets_shape[0];
|
|
return {{bsz, dim_embed}};
|
|
}
|
|
}
|
|
|
|
std::vector<paddle::DataType> RebuildPaddingInferDtype(
|
|
const paddle::DataType &tmp_out_dtype,
|
|
const paddle::DataType &cum_offsets_dtype,
|
|
const paddle::DataType &seq_len_this_time_dtype,
|
|
const paddle::DataType &seq_lens_decoder_dtype,
|
|
const paddle::DataType &seq_lens_encoder_dtype,
|
|
const paddle::optional<paddle::DataType> &output_padding_offset_dtype) {
|
|
return {tmp_out_dtype};
|
|
}
|
|
|
|
PD_BUILD_STATIC_OP(rebuild_padding)
|
|
.Inputs({"tmp_out",
|
|
"cum_offsets",
|
|
"seq_len_this_time",
|
|
"seq_lens_decoder",
|
|
"seq_lens_encoder",
|
|
paddle::Optional("output_padding_offset")})
|
|
.Outputs({"out"})
|
|
.Attrs({"max_input_length: int"})
|
|
.SetKernelFn(PD_KERNEL(RebuildPadding))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(RebuildPaddingInferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(RebuildPaddingInferDtype));
|