Files
FastDeploy/python/fastdeploy/vision/ocr/ppocr/__init__.py
zengshao0622 709ba51612 [WIP]Add VI-LayoutXLM (#2048)
* WIP, add VI-LayoutXLM

* fix pybind

* update the dir of ser_vi_layoutxlm model

* update dir and name of ser_vi_layoutxlm model

* update model name to StructureV2SerViLayoutXLMModel

* fix import paddle bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-06-26 16:40:05 +08:00

1338 lines
48 KiB
Python
Executable File

# # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# # http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
from ...common import ProcessorManager
from .utils.ser_vi_layoutxlm.vqa_utils import *
from .utils.ser_vi_layoutxlm.transforms import *
from .utils.ser_vi_layoutxlm.operators import *
from pathlib import Path
def sort_boxes(boxes):
return C.vision.ocr.sort_boxes(boxes)
class DBDetectorPreprocessor(ProcessorManager):
def __init__(self):
"""
Create a preprocessor for DBDetectorModel
"""
super(DBDetectorPreprocessor, self).__init__()
self._manager = C.vision.ocr.DBDetectorPreprocessor()
@property
def max_side_len(self):
"""Get max_side_len value.
"""
return self._manager.max_side_len
@max_side_len.setter
def max_side_len(self, value):
"""Set max_side_len value.
:param: value: (int) max_side_len value
"""
assert isinstance(
value, int), "The value to set `max_side_len` must be type of int."
self._manager.max_side_len = value
def set_normalize(self, mean, std, is_scale):
"""Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default
normalize parameters.
:param: mean: (list of float) mean values
:param: std: (list of float) std values
:param: is_scale: (boolean) whether to scale
"""
self._manager.set_normalize(mean, std, is_scale)
@property
def static_shape_infer(self):
return self._manager.static_shape_infer
@static_shape_infer.setter
def static_shape_infer(self, value):
assert isinstance(
value,
bool), "The value to set `static_shape_infer` must be type of bool."
self._manager.static_shape_infer = value
def disable_normalize(self):
"""
This function will disable normalize in preprocessing step.
"""
self._manager.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._manager.disable_permute()
class DBDetectorPostprocessor:
def __init__(self):
"""
Create a postprocessor for DBDetectorModel
"""
self._postprocessor = C.vision.ocr.DBDetectorPostprocessor()
def run(self, runtime_results, batch_det_img_info):
"""Postprocess the runtime results for DBDetectorModel
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
:param: batch_det_img_info: (list of std::array<int, 4>)The output of det_preprocessor
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, batch_det_img_info)
@property
def det_db_thresh(self):
"""
Return the det_db_thresh of DBDetectorPostprocessor
"""
return self._postprocessor.det_db_thresh
@det_db_thresh.setter
def det_db_thresh(self, value):
"""Set the det_db_thresh for DBDetectorPostprocessor
:param: value : the det_db_thresh value
"""
assert isinstance(
value,
float), "The value to set `det_db_thresh` must be type of float."
self._postprocessor.det_db_thresh = value
@property
def det_db_box_thresh(self):
"""
Return the det_db_box_thresh of DBDetectorPostprocessor
"""
return self._postprocessor.det_db_box_thresh
@det_db_box_thresh.setter
def det_db_box_thresh(self, value):
"""Set the det_db_box_thresh for DBDetectorPostprocessor
:param: value : the det_db_box_thresh value
"""
assert isinstance(
value, float
), "The value to set `det_db_box_thresh` must be type of float."
self._postprocessor.det_db_box_thresh = value
@property
def det_db_unclip_ratio(self):
"""
Return the det_db_unclip_ratio of DBDetectorPostprocessor
"""
return self._postprocessor.det_db_unclip_ratio
@det_db_unclip_ratio.setter
def det_db_unclip_ratio(self, value):
"""Set the det_db_unclip_ratio for DBDetectorPostprocessor
:param: value : the det_db_unclip_ratio value
"""
assert isinstance(
value, float
), "The value to set `det_db_unclip_ratio` must be type of float."
self._postprocessor.det_db_unclip_ratio = value
@property
def det_db_score_mode(self):
"""
Return the det_db_score_mode of DBDetectorPostprocessor
"""
return self._postprocessor.det_db_score_mode
@det_db_score_mode.setter
def det_db_score_mode(self, value):
"""Set the det_db_score_mode for DBDetectorPostprocessor
:param: value : the det_db_score_mode value
"""
assert isinstance(
value,
str), "The value to set `det_db_score_mode` must be type of str."
self._postprocessor.det_db_score_mode = value
@property
def use_dilation(self):
"""
Return the use_dilation of DBDetectorPostprocessor
"""
return self._postprocessor.use_dilation
@use_dilation.setter
def use_dilation(self, value):
"""Set the use_dilation for DBDetectorPostprocessor
:param: value : the use_dilation value
"""
assert isinstance(
value,
bool), "The value to set `use_dilation` must be type of bool."
self._postprocessor.use_dilation = value
class DBDetector(FastDeployModel):
def __init__(self,
model_file="",
params_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load OCR detection model provided by PaddleOCR.
:param model_file: (str)Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(DBDetector, self).__init__(runtime_option)
if (len(model_file) == 0):
self._model = C.vision.ocr.DBDetector()
self._runnable = False
else:
self._model = C.vision.ocr.DBDetector(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "DBDetector initialize failed."
self._runnable = True
def clone(self):
"""Clone OCR detection model object
:return: a new OCR detection model object
"""
class DBDetectorClone(DBDetector):
def __init__(self, model):
self._model = model
clone_model = DBDetectorClone(self._model.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: boxes
"""
if self._runnable:
return self._model.predict(input_image)
return False
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: batch_boxes
"""
if self._runnable:
return self._model.batch_predict(images)
return False
@property
def preprocessor(self):
return self._model.preprocessor
@property
def postprocessor(self):
return self._model.postprocessor
# Det Preprocessor Property
@property
def max_side_len(self):
return self._model.preprocessor.max_side_len
@max_side_len.setter
def max_side_len(self, value):
assert isinstance(
value, int), "The value to set `max_side_len` must be type of int."
self._model.preprocessor.max_side_len = value
# Det Ppstprocessor Property
@property
def det_db_thresh(self):
return self._model.postprocessor.det_db_thresh
@det_db_thresh.setter
def det_db_thresh(self, value):
assert isinstance(
value,
float), "The value to set `det_db_thresh` must be type of float."
self._model.postprocessor.det_db_thresh = value
@property
def det_db_box_thresh(self):
return self._model.postprocessor.det_db_box_thresh
@det_db_box_thresh.setter
def det_db_box_thresh(self, value):
assert isinstance(
value, float
), "The value to set `det_db_box_thresh` must be type of float."
self._model.postprocessor.det_db_box_thresh = value
@property
def det_db_unclip_ratio(self):
return self._model.postprocessor.det_db_unclip_ratio
@det_db_unclip_ratio.setter
def det_db_unclip_ratio(self, value):
assert isinstance(
value, float
), "The value to set `det_db_unclip_ratio` must be type of float."
self._model.postprocessor.det_db_unclip_ratio = value
@property
def det_db_score_mode(self):
return self._model.postprocessor.det_db_score_mode
@det_db_score_mode.setter
def det_db_score_mode(self, value):
assert isinstance(
value,
str), "The value to set `det_db_score_mode` must be type of str."
self._model.postprocessor.det_db_score_mode = value
@property
def use_dilation(self):
return self._model.postprocessor.use_dilation
@use_dilation.setter
def use_dilation(self, value):
assert isinstance(
value,
bool), "The value to set `use_dilation` must be type of bool."
self._model.postprocessor.use_dilation = value
class ClassifierPreprocessor(ProcessorManager):
def __init__(self):
"""Create a preprocessor for ClassifierModel
"""
super(ClassifierPreprocessor, self).__init__()
self._manager = C.vision.ocr.ClassifierPreprocessor()
def set_normalize(self, mean, std, is_scale):
"""Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default
normalize parameters.
:param: mean: (list of float) mean values
:param: std: (list of float) std values
:param: is_scale: (boolean) whether to scale
"""
self._manager.set_normalize(mean, std, is_scale)
@property
def cls_image_shape(self):
return self._manager.cls_image_shape
@cls_image_shape.setter
def cls_image_shape(self, value):
assert isinstance(
value,
list), "The value to set `cls_image_shape` must be type of list."
self._manager.cls_image_shape = value
def disable_normalize(self):
"""
This function will disable normalize in preprocessing step.
"""
self._manager.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._manager.disable_permute()
class ClassifierPostprocessor:
def __init__(self):
"""Create a postprocessor for ClassifierModel
"""
self._postprocessor = C.vision.ocr.ClassifierPostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for ClassifierModel
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results)
@property
def cls_thresh(self):
"""
Return the cls_thresh of ClassifierPostprocessor
"""
return self._postprocessor.cls_thresh
@cls_thresh.setter
def cls_thresh(self, value):
"""Set the cls_thresh for ClassifierPostprocessor
:param: value: the value of cls_thresh
"""
assert isinstance(
value,
float), "The value to set `cls_thresh` must be type of float."
self._postprocessor.cls_thresh = value
class Classifier(FastDeployModel):
def __init__(self,
model_file="",
params_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load OCR classification model provided by PaddleOCR.
:param model_file: (str)Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(Classifier, self).__init__(runtime_option)
if (len(model_file) == 0):
self._model = C.vision.ocr.Classifier()
self._runnable = False
else:
self._model = C.vision.ocr.Classifier(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "Classifier initialize failed."
self._runnable = True
def clone(self):
"""Clone OCR classification model object
:return: a new OCR classification model object
"""
class ClassifierClone(Classifier):
def __init__(self, model):
self._model = model
clone_model = ClassifierClone(self._model.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: cls_label, cls_score
"""
if self._runnable:
return self._model.predict(input_image)
return False
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: list of cls_label, list of cls_score
"""
if self._runnable:
return self._model.batch_predict(images)
return False
@property
def preprocessor(self):
return self._model.preprocessor
@preprocessor.setter
def preprocessor(self, value):
self._model.preprocessor = value
@property
def postprocessor(self):
return self._model.postprocessor
@postprocessor.setter
def postprocessor(self, value):
self._model.postprocessor = value
@property
def cls_image_shape(self):
return self._model.preprocessor.cls_image_shape
@cls_image_shape.setter
def cls_image_shape(self, value):
assert isinstance(
value,
list), "The value to set `cls_image_shape` must be type of list."
self._model.preprocessor.cls_image_shape = value
# Cls Postprocessor Property
@property
def cls_thresh(self):
return self._model.postprocessor.cls_thresh
@cls_thresh.setter
def cls_thresh(self, value):
assert isinstance(
value,
float), "The value to set `cls_thresh` must be type of float."
self._model.postprocessor.cls_thresh = value
class RecognizerPreprocessor(ProcessorManager):
def __init__(self):
"""Create a preprocessor for RecognizerModel
"""
super(RecognizerPreprocessor, self).__init__()
self._manager = C.vision.ocr.RecognizerPreprocessor()
@property
def static_shape_infer(self):
return self._manager.static_shape_infer
@static_shape_infer.setter
def static_shape_infer(self, value):
assert isinstance(
value,
bool), "The value to set `static_shape_infer` must be type of bool."
self._manager.static_shape_infer = value
def set_normalize(self, mean, std, is_scale):
"""Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default
normalize parameters.
:param: mean: (list of float) mean values
:param: std: (list of float) std values
:param: is_scale: (boolean) whether to scale
"""
self._manager.set_normalize(mean, std, is_scale)
@property
def rec_image_shape(self):
return self._manager.rec_image_shape
@rec_image_shape.setter
def rec_image_shape(self, value):
assert isinstance(
value,
list), "The value to set `rec_image_shape` must be type of list."
self._manager.rec_image_shape = value
def disable_normalize(self):
"""
This function will disable normalize in preprocessing step.
"""
self._manager.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._manager.disable_permute()
class RecognizerPostprocessor:
def __init__(self, label_path):
"""Create a postprocessor for RecognizerModel
:param label_path: (str)Path of label file
"""
self._postprocessor = C.vision.ocr.RecognizerPostprocessor(label_path)
def run(self, runtime_results):
"""Postprocess the runtime results for RecognizerModel
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results)
class Recognizer(FastDeployModel):
def __init__(self,
model_file="",
params_file="",
label_path="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load OCR recognition model provided by PaddleOCR
:param model_file: (str)Path of model file, e.g ./ch_PP-OCRv3_rec_infer/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./ch_PP-OCRv3_rec_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param label_path: (str)Path of label file used by OCR recognition model. e.g ./ppocr_keys_v1.txt
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(Recognizer, self).__init__(runtime_option)
if (len(model_file) == 0):
self._model = C.vision.ocr.Recognizer()
self._runnable = False
else:
self._model = C.vision.ocr.Recognizer(
model_file, params_file, label_path, self._runtime_option,
model_format)
assert self.initialized, "Recognizer initialize failed."
self._runnable = True
def clone(self):
"""Clone OCR recognition model object
:return: a new OCR recognition model object
"""
class RecognizerClone(Recognizer):
def __init__(self, model):
self._model = model
clone_model = RecognizerClone(self._model.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: rec_text, rec_score
"""
if self._runnable:
return self._model.predict(input_image)
return False
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: list of rec_text, list of rec_score
"""
if self._runnable:
return self._model.batch_predict(images)
return False
@property
def preprocessor(self):
return self._model.preprocessor
@preprocessor.setter
def preprocessor(self, value):
self._model.preprocessor = value
@property
def postprocessor(self):
return self._model.postprocessor
@postprocessor.setter
def postprocessor(self, value):
self._model.postprocessor = value
@property
def static_shape_infer(self):
return self._model.preprocessor.static_shape_infer
@static_shape_infer.setter
def static_shape_infer(self, value):
assert isinstance(
value,
bool), "The value to set `static_shape_infer` must be type of bool."
self._model.preprocessor.static_shape_infer = value
@property
def rec_image_shape(self):
return self._model.preprocessor.rec_image_shape
@rec_image_shape.setter
def rec_image_shape(self, value):
assert isinstance(
value,
list), "The value to set `rec_image_shape` must be type of list."
self._model.preprocessor.rec_image_shape = value
class StructureV2TablePreprocessor:
def __init__(self):
"""Create a preprocessor for StructureV2Table Model
"""
self._preprocessor = C.vision.ocr.StructureV2TablePreprocessor()
def run(self, input_ims):
"""Preprocess input images for StructureV2TableModel
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
class StructureV2TablePostprocessor:
def __init__(self):
"""Create a postprocessor for StructureV2Table Model
"""
self._postprocessor = C.vision.ocr.StructureV2TablePostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for StructureV2Table Model
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results)
class StructureV2Table(FastDeployModel):
def __init__(self,
model_file="",
params_file="",
table_char_dict_path="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load StructureV2Table model provided by PP-StructureV2.
:param model_file: (str)Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param table_char_dict_path: (str)Path of table_char_dict file, e.g ../ppocr/utils/dict/table_structure_dict_ch.txt
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(StructureV2Table, self).__init__(runtime_option)
if (len(model_file) == 0):
self._model = C.vision.ocr.StructureV2Table()
self._runnable = False
else:
self._model = C.vision.ocr.StructureV2Table(
model_file, params_file, table_char_dict_path,
self._runtime_option, model_format)
assert self.initialized, "Classifier initialize failed."
self._runnable = True
def clone(self):
"""Clone StructureV2Table model object
:return: a new StructureV2Table model object
"""
class StructureV2TableClone(StructureV2Table):
def __init__(self, model):
self._model = model
clone_model = StructureV2TableClone(self._model.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: bbox, structure
"""
if self._runnable:
return self._model.predict(input_image)
return False
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: list of bbox list, list of structure
"""
if self._runnable:
return self._model.batch_predict(images)
return False
@property
def preprocessor(self):
return self._model.preprocessor
@preprocessor.setter
def preprocessor(self, value):
self._model.preprocessor = value
@property
def postprocessor(self):
return self._model.postprocessor
@postprocessor.setter
def postprocessor(self, value):
self._model.postprocessor = value
class StructureV2LayoutPreprocessor:
def __init__(self):
"""Create a preprocessor for StructureV2Layout Model
"""
self._preprocessor = C.vision.ocr.StructureV2LayoutPreprocessor()
def run(self, input_ims):
"""Preprocess input images for StructureV2Layout Model
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
class StructureV2LayoutPostprocessor:
def __init__(self):
"""Create a postprocessor for StructureV2Layout Model
"""
self._postprocessor = C.vision.ocr.StructureV2LayoutPostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for StructureV2Layout Model
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results)
class StructureV2Layout(FastDeployModel):
def __init__(self,
model_file="",
params_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load StructureV2Layout model provided by PP-StructureV2.
:param model_file: (str)Path of model file, e.g ./picodet_lcnet_x1_0_fgd_layout_infer/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./picodet_lcnet_x1_0_fgd_layout_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(StructureV2Layout, self).__init__(runtime_option)
if (len(model_file) == 0):
self._model = C.vision.ocr.StructureV2Layout()
self._runnable = False
else:
self._model = C.vision.ocr.StructureV2Layout(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "StructureV2Layout model initialize failed."
self._runnable = True
def clone(self):
"""Clone StructureV2Layout model object
:return: a new StructureV2Table model object
"""
class StructureV2LayoutClone(StructureV2Layout):
def __init__(self, model):
self._model = model
clone_model = StructureV2LayoutClone(self._model.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: bboxes
"""
if self._runnable:
return self._model.predict(input_image)
return False
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: list of bboxes list
"""
if self._runnable:
return self._model.batch_predict(images)
return False
@property
def preprocessor(self):
return self._model.preprocessor
@preprocessor.setter
def preprocessor(self, value):
self._model.preprocessor = value
@property
def postprocessor(self):
return self._model.postprocessor
@postprocessor.setter
def postprocessor(self, value):
self._model.postprocessor = value
class PPOCRv4(FastDeployModel):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
"""Consruct a pipeline with text detector, direction classifier and text recognizer models
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
:param cls_model: (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
"""
assert det_model is not None and rec_model is not None, "The det_model and rec_model cannot be None."
if cls_model is None:
self.system_ = C.vision.ocr.PPOCRv4(det_model._model,
rec_model._model)
else:
self.system_ = C.vision.ocr.PPOCRv4(
det_model._model, cls_model._model, rec_model._model)
def clone(self):
"""Clone PPOCRv4 pipeline object
:return: a new PPOCRv4 pipeline object
"""
class PPOCRv4Clone(PPOCRv4):
def __init__(self, system):
self.system_ = system
clone_model = PPOCRv4Clone(self.system_.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: OCRResult
"""
return self.system_.predict(input_image)
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: OCRBatchResult
"""
return self.system_.batch_predict(images)
@property
def cls_batch_size(self):
return self.system_.cls_batch_size
@cls_batch_size.setter
def cls_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `cls_batch_size` must be type of int."
self.system_.cls_batch_size = value
@property
def rec_batch_size(self):
return self.system_.rec_batch_size
@rec_batch_size.setter
def rec_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `rec_batch_size` must be type of int."
self.system_.rec_batch_size = value
class PPOCRSystemv4(PPOCRv4):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
logging.warning(
"DEPRECATED: fd.vision.ocr.PPOCRSystemv4 is deprecated, "
"please use fd.vision.ocr.PPOCRv4 instead.")
super(PPOCRSystemv4, self).__init__(det_model, cls_model, rec_model)
def predict(self, input_image):
return super(PPOCRSystemv4, self).predict(input_image)
class PPOCRv3(FastDeployModel):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
"""Consruct a pipeline with text detector, direction classifier and text recognizer models
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
:param cls_model: (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
"""
assert det_model is not None and rec_model is not None, "The det_model and rec_model cannot be None."
if cls_model is None:
self.system_ = C.vision.ocr.PPOCRv3(det_model._model,
rec_model._model)
else:
self.system_ = C.vision.ocr.PPOCRv3(
det_model._model, cls_model._model, rec_model._model)
def clone(self):
"""Clone PPOCRv3 pipeline object
:return: a new PPOCRv3 pipeline object
"""
class PPOCRv3Clone(PPOCRv3):
def __init__(self, system):
self.system_ = system
clone_model = PPOCRv3Clone(self.system_.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: OCRResult
"""
return self.system_.predict(input_image)
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: OCRBatchResult
"""
return self.system_.batch_predict(images)
@property
def cls_batch_size(self):
return self.system_.cls_batch_size
@cls_batch_size.setter
def cls_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `cls_batch_size` must be type of int."
self.system_.cls_batch_size = value
@property
def rec_batch_size(self):
return self.system_.rec_batch_size
@rec_batch_size.setter
def rec_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `rec_batch_size` must be type of int."
self.system_.rec_batch_size = value
class PPOCRSystemv3(PPOCRv3):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
logging.warning(
"DEPRECATED: fd.vision.ocr.PPOCRSystemv3 is deprecated, "
"please use fd.vision.ocr.PPOCRv3 instead.")
super(PPOCRSystemv3, self).__init__(det_model, cls_model, rec_model)
def predict(self, input_image):
return super(PPOCRSystemv3, self).predict(input_image)
class PPOCRv2(FastDeployModel):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
"""Consruct a pipeline with text detector, direction classifier and text recognizer models
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
:param cls_model: (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
"""
assert det_model is not None and rec_model is not None, "The det_model and rec_model cannot be None."
if cls_model is None:
self.system_ = C.vision.ocr.PPOCRv2(det_model._model,
rec_model._model)
else:
self.system_ = C.vision.ocr.PPOCRv2(
det_model._model, cls_model._model, rec_model._model)
def clone(self):
"""Clone PPOCRv3 pipeline object
:return: a new PPOCRv3 pipeline object
"""
class PPOCRv2Clone(PPOCRv2):
def __init__(self, system):
self.system_ = system
clone_model = PPOCRv2Clone(self.system_.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: OCRResult
"""
return self.system_.predict(input_image)
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: OCRBatchResult
"""
return self.system_.batch_predict(images)
@property
def cls_batch_size(self):
return self.system_.cls_batch_size
@cls_batch_size.setter
def cls_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `cls_batch_size` must be type of int."
self.system_.cls_batch_size = value
@property
def rec_batch_size(self):
return self.system_.rec_batch_size
@rec_batch_size.setter
def rec_batch_size(self, value):
assert isinstance(
value,
int), "The value to set `rec_batch_size` must be type of int."
self.system_.rec_batch_size = value
class PPOCRSystemv2(PPOCRv2):
def __init__(self, det_model=None, cls_model=None, rec_model=None):
logging.warning(
"DEPRECATED: fd.vision.ocr.PPOCRSystemv2 is deprecated, "
"please use fd.vision.ocr.PPOCRv2 instead.")
super(PPOCRSystemv2, self).__init__(det_model, cls_model, rec_model)
def predict(self, input_image):
return super(PPOCRSystemv2, self).predict(input_image)
class PPStructureV2Table(FastDeployModel):
def __init__(self, det_model=None, rec_model=None, table_model=None):
"""Consruct a pipeline with text detector, text recognizer and table recognizer models
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
:param table_model: (FastDeployModel) The table recognition model object created by fastdeploy.vision.ocr.Table.
"""
assert det_model is not None and rec_model is not None and table_model is not None, "The det_model, rec_model and table_model cannot be None."
self.system_ = C.vision.ocr.PPStructureV2Table(
det_model._model,
rec_model._model,
table_model._model, )
def clone(self):
"""Clone PPStructureV2Table pipeline object
:return: a new PPStructureV2Table pipeline object
"""
class PPStructureV2TableClone(PPStructureV2Table):
def __init__(self, system):
self.system_ = system
clone_model = PPStructureV2TableClone(self.system_.clone())
return clone_model
def predict(self, input_image):
"""Predict an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: OCRResult
"""
return self.system_.predict(input_image)
def batch_predict(self, images):
"""Predict a batch of input image
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return: OCRBatchResult
"""
return self.system_.batch_predict(images)
class PPStructureV2TableSystem(PPStructureV2Table):
def __init__(self, det_model=None, rec_model=None, table_model=None):
logging.warning(
"DEPRECATED: fd.vision.ocr.PPStructureV2TableSystem is deprecated, "
"please use fd.vision.ocr.PPStructureV2Table instead.")
super(PPStructureV2TableSystem, self).__init__(det_model, rec_model,
table_model)
def predict(self, input_image):
return super(PPStructureV2TableSystem, self).predict(input_image)
class StructureV2SERViLayoutXLMModelPreprocessor():
def __init__(self, ser_dict_path, use_gpu=True):
"""Create a preprocessor for Ser-Vi-LayoutXLM model.
:param: ser_dict_path: (str) class file path
:param: use_gpu: (bool) whether use gpu to OCR process
"""
self._manager = None
from paddleocr import PaddleOCR
self.ocr_engine = PaddleOCR(
use_angle_cls=False,
det_model_dir=None,
rec_model_dir=None,
show_log=False,
use_gpu=use_gpu)
pre_process_list = [{
'VQATokenLabelEncode': {
'class_path': ser_dict_path,
'contains_re': False,
'ocr_engine': self.ocr_engine,
'order_method': "tb-yx"
}
}, {
'VQATokenPad': {
'max_seq_len': 512,
'return_attention_mask': True
}
}, {
'VQASerTokenChunk': {
'max_seq_len': 512,
'return_attention_mask': True
}
}, {
'Resize': {
'size': [224, 224]
}
}, {
'NormalizeImage': {
'std': [58.395, 57.12, 57.375],
'mean': [123.675, 116.28, 103.53],
'scale': '1',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': [
'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
'image', 'labels', 'segment_offset_id', 'ocr_info',
'entities'
]
}
}]
self.preprocess_op = create_operators(pre_process_list,
{'infer_mode': True})
def _transform(self, data, ops=None):
""" transform """
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def run(self, input_im):
"""Run preprocess of Ser-Vi-LayoutXLM model
:param: input_ims: (numpy.ndarray) input image
"""
ori_im = input_im.copy()
data = {'image': input_im}
data = transform(data, self.preprocess_op)
for idx in range(len(data)):
if isinstance(data[idx], np.ndarray):
data[idx] = np.expand_dims(data[idx], axis=0)
else:
data[idx] = [data[idx]]
return data
class StructureV2SERViLayoutXLMModelPostprocessor():
def __init__(self, class_path):
"""Create a postprocessor for Ser-Vi-LayoutXLM model.
:param: class_path: (string) class file path
"""
self.postprocessor_op = VQASerTokenLayoutLMPostProcess(class_path)
def run(self, preds, batch=None, *args, **kwargs):
"""Run postprocess of Ser-Vi-LayoutXLM model.
:param: preds: (list) results of infering
"""
return self.postprocessor_op(preds, batch, *args, **kwargs)
class StructureV2SERViLayoutXLMModel(FastDeployModel):
def __init__(self,
model_file,
params_file,
ser_dict_path,
class_path,
config_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load SERViLayoutXLM model provided by PP-StructureV2.
:param model_file: (str)Path of model file, e.g ./ser_vi_layout_xlm/model.pdmodel.
:param params_file: (str)Path of parameter file, e.g ./ser_vi_layout_xlm/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
:param ser_dict_path: (str) class file path
:param class_path: (str) class file path
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
"""
super(StructureV2SERViLayoutXLMModel, self).__init__(runtime_option)
assert self._runtime_option.backend != 0, \
"Runtime Option required backend setting."
self._model = C.vision.ocr.StructureV2SERViLayoutXLMModel(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "SERViLayoutXLM model initialize failed."
self.preprocessor = StructureV2SERViLayoutXLMModelPreprocessor(
ser_dict_path)
self.postprocesser = StructureV2SERViLayoutXLMModelPostprocessor(
class_path)
self.input_name_0 = self._model.get_input_info(0).name
self.input_name_1 = self._model.get_input_info(1).name
self.input_name_2 = self._model.get_input_info(2).name
self.input_name_3 = self._model.get_input_info(3).name
def predict(self, image):
assert isinstance(image,
np.ndarray), "predict recives numpy.ndarray(BGR)"
data = self.preprocessor.run(image)
infer_input = {
self.input_name_0: data[0],
self.input_name_1: data[1],
self.input_name_2: data[2],
self.input_name_3: data[3],
}
infer_result = self._model.infer(infer_input)
infer_result = infer_result[0]
post_result = self.postprocesser.run(infer_result,
segment_offset_ids=data[6],
ocr_infos=data[7])
return post_result
def batch_predict(self, image_list):
assert isinstance(image_list, list) and \
isinstance(image_list[0], np.ndarray), \
"batch_predict recives list of numpy.ndarray(BGR)"
# reading and preprocessing images
datas = None
for image in image_list:
data = self.preprocessor.run(image)
# concatenate data to batch
if datas == None:
datas = data
else:
for idx in range(len(data)):
if isinstance(data[idx], np.ndarray):
datas[idx] = np.concatenate(
(datas[idx], data[idx]), axis=0)
else:
datas[idx].extend(data[idx])
# infer
infer_inputs = {
self.input_name_0: datas[0],
self.input_name_1: datas[1],
self.input_name_2: datas[2],
self.input_name_3: datas[3],
}
infer_results = self._model.infer(infer_inputs)
infer_results = infer_results[0]
# postprocessing
post_results = self.postprocesser.run(infer_results,
segment_offset_ids=datas[6],
ocr_infos=datas[7])
return post_results