mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-29 02:52:55 +08:00
77 lines
2.9 KiB
C++
77 lines
2.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle2onnx/mapper/tensor/scale.h"
|
|
|
|
#include <vector>
|
|
|
|
namespace paddle2onnx {
|
|
|
|
REGISTER_MAPPER(scale, ScaleMapper)
|
|
|
|
void ScaleMapper::Opset7() {
|
|
auto input_info = GetInput("X");
|
|
auto output_info = GetOutput("Out");
|
|
bool has_scale_tensor = HasInput("ScaleTensor");
|
|
bool is_scale_1 = ((scale_ - 1.0) < 1e-06 && (scale_ - 1.0) > -1e-06);
|
|
bool is_bias_0 = (bias_ < 1e-06 && bias_ > -1e-06);
|
|
|
|
if (!has_scale_tensor && is_scale_1 && is_bias_0) {
|
|
helper_->MakeNode("Identity", {input_info[0].name}, {output_info[0].name});
|
|
} else {
|
|
auto input = helper_->AutoCast(input_info[0].name, input_info[0].dtype,
|
|
P2ODataType::FP32);
|
|
std::string out = input;
|
|
if (bias_after_scale_) {
|
|
if (!is_scale_1 || HasInput("ScaleTensor")) {
|
|
if (HasInput("ScaleTensor")) {
|
|
auto scale_info = GetInput("ScaleTensor");
|
|
auto scale = helper_->AutoCast(
|
|
scale_info[0].name, scale_info[0].dtype, P2ODataType::FP32);
|
|
out = helper_->MakeNode("Mul", {out, scale})->output(0);
|
|
} else {
|
|
auto scale =
|
|
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT, scale_);
|
|
out = helper_->MakeNode("Mul", {out, scale})->output(0);
|
|
}
|
|
}
|
|
if (!is_bias_0) {
|
|
auto bias =
|
|
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT, bias_);
|
|
out = helper_->MakeNode("Add", {out, bias})->output(0);
|
|
}
|
|
} else {
|
|
if (!is_bias_0) {
|
|
auto bias =
|
|
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT, bias_);
|
|
out = helper_->MakeNode("Add", {out, bias})->output(0);
|
|
}
|
|
if (!is_scale_1 || HasInput("ScaleTensor")) {
|
|
if (HasInput("ScaleTensor")) {
|
|
auto scale_info = GetInput("ScaleTensor");
|
|
auto scale = helper_->AutoCast(
|
|
scale_info[0].name, scale_info[0].dtype, P2ODataType::FP32);
|
|
out = helper_->MakeNode("Mul", {out, scale})->output(0);
|
|
} else {
|
|
auto scale =
|
|
helper_->Constant({}, ONNX_NAMESPACE::TensorProto::FLOAT, scale_);
|
|
out = helper_->MakeNode("Mul", {out, scale})->output(0);
|
|
}
|
|
}
|
|
}
|
|
helper_->AutoCast(out, output_info[0].name, P2ODataType::FP32,
|
|
output_info[0].dtype);
|
|
}
|
|
}
|
|
} // namespace paddle2onnx
|