mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 4a4c37aa97
			
		
	
	4a4c37aa97
	
	
	
		
			
			* Update ppseg resize image && valid backend according to input_shape * Update ppseg model.cc Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "fastdeploy/vision/segmentation/ppseg/model.h"
 | |
| #include "fastdeploy/vision.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| #include "yaml-cpp/yaml.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace segmentation {
 | |
| 
 | |
| PaddleSegModel::PaddleSegModel(const std::string& model_file,
 | |
|                                const std::string& params_file,
 | |
|                                const std::string& config_file,
 | |
|                                const RuntimeOption& custom_option,
 | |
|                                const ModelFormat& model_format) {
 | |
|   config_file_ = config_file;
 | |
|   valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT};
 | |
|   valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Initialize() {
 | |
|   if (!BuildPreprocessPipelineFromConfig()) {
 | |
|     FDERROR << "Failed to build preprocess pipeline from configuration file."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
 | |
|   processors_.clear();
 | |
|   YAML::Node cfg;
 | |
|   processors_.push_back(std::make_shared<BGR2RGB>());
 | |
|   try {
 | |
|     cfg = YAML::LoadFile(config_file_);
 | |
|   } catch (YAML::BadFile& e) {
 | |
|     FDERROR << "Failed to load yaml file " << config_file_
 | |
|             << ", maybe you should check this file." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   bool yml_contain_resize_op = false;
 | |
| 
 | |
|   if (cfg["Deploy"]["transforms"]) {
 | |
|     auto preprocess_cfg = cfg["Deploy"]["transforms"];
 | |
|     for (const auto& op : preprocess_cfg) {
 | |
|       FDASSERT(op.IsMap(),
 | |
|                "Require the transform information in yaml be Map type.");
 | |
|       if (op["type"].as<std::string>() == "Normalize") {
 | |
|         std::vector<float> mean = {0.5, 0.5, 0.5};
 | |
|         std::vector<float> std = {0.5, 0.5, 0.5};
 | |
|         if (op["mean"]) {
 | |
|           mean = op["mean"].as<std::vector<float>>();
 | |
|         }
 | |
|         if (op["std"]) {
 | |
|           std = op["std"].as<std::vector<float>>();
 | |
|         }
 | |
|         processors_.push_back(std::make_shared<Normalize>(mean, std));
 | |
| 
 | |
|       } else if (op["type"].as<std::string>() == "Resize") {
 | |
|         yml_contain_resize_op = true;
 | |
|         const auto& target_size = op["target_size"];
 | |
|         int resize_width = target_size[0].as<int>();
 | |
|         int resize_height = target_size[1].as<int>();
 | |
|         processors_.push_back(
 | |
|             std::make_shared<Resize>(resize_width, resize_height));
 | |
|       } else {
 | |
|         std::string op_name = op["type"].as<std::string>();
 | |
|         FDERROR << "Unexcepted preprocess operator: " << op_name << "."
 | |
|                 << std::endl;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (cfg["Deploy"]["input_shape"]) {
 | |
|     auto input_shape = cfg["Deploy"]["input_shape"];
 | |
|     int input_batch = input_shape[0].as<int>();
 | |
|     int input_channel = input_shape[1].as<int>();
 | |
|     int input_height = input_shape[2].as<int>();
 | |
|     int input_width = input_shape[3].as<int>();
 | |
|     if (input_height == -1 || input_width == -1) {
 | |
|       valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
 | |
|       valid_gpu_backends = {Backend::PDINFER};
 | |
|     }
 | |
|     if (input_height != -1 && input_width != -1 && !yml_contain_resize_op) {
 | |
|       processors_.push_back(
 | |
|           std::make_shared<Resize>(input_width, input_height));
 | |
|     }
 | |
|   }
 | |
|   if (cfg["Deploy"]["output_op"]) {
 | |
|     std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
 | |
|     if (output_op == "softmax") {
 | |
|       is_with_softmax = true;
 | |
|       is_with_argmax = false;
 | |
|     } else if (output_op == "argmax") {
 | |
|       is_with_softmax = false;
 | |
|       is_with_argmax = true;
 | |
|     } else if (output_op == "none") {
 | |
|       is_with_softmax = false;
 | |
|       is_with_argmax = false;
 | |
|     } else {
 | |
|       FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
 | |
|               << "." << std::endl;
 | |
|     }
 | |
|   }
 | |
|   if (is_with_argmax) {
 | |
|     FDWARNING << "The PaddleSeg model is exported with argmax."
 | |
|               << " If you want the edge of segmentation image more"
 | |
|               << " smoother. Please export model with parameters"
 | |
|               << "  --output_op softmax." << std::endl;
 | |
|   }
 | |
|   processors_.push_back(std::make_shared<HWC2CHW>());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Preprocess(Mat* mat, FDTensor* output) {
 | |
|   for (size_t i = 0; i < processors_.size(); ++i) {
 | |
|     if (processors_[i]->Name().compare("Resize") == 0) {
 | |
|       auto processor = dynamic_cast<Resize*>(processors_[i].get());
 | |
|       int resize_width = -1;
 | |
|       int resize_height = -1;
 | |
|       std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
 | |
|       if (is_vertical_screen && (resize_width > resize_height)) {
 | |
|         if (processor->SetWidthAndHeight(resize_height, resize_width)) {
 | |
|           FDERROR << "Failed to set Resize processor width and height "
 | |
|                   << processors_[i]->Name() << "." << std::endl;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!(*(processors_[i].get()))(mat)) {
 | |
|       FDERROR << "Failed to process image data in " << processors_[i]->Name()
 | |
|               << "." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);
 | |
|   output->name = InputInfoOfRuntime(0).name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Postprocess(
 | |
|     FDTensor* infer_result, SegmentationResult* result,
 | |
|     const std::map<std::string, std::array<int, 2>>& im_info) {
 | |
|   // PaddleSeg has three types of inference output:
 | |
|   //     1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
 | |
|   //     always 1, the element in matrix is classified label_id INT64 Type.
 | |
|   //     2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
 | |
|   //     always
 | |
|   //     1(only support batch size 1), Channel is the num of classes. The
 | |
|   //     element is the logits of classes
 | |
|   //     FP32
 | |
|   //     3. output without argmax and with softmax. 4-D matrix NCHW, the result
 | |
|   //     of 2 with softmax layer
 | |
|   // Fastdeploy output:
 | |
|   //     1. label_map
 | |
|   //     2. score_map(optional)
 | |
|   //     3. shape: 2-D HW
 | |
|   FDASSERT(infer_result->dtype == FDDataType::INT64 ||
 | |
|                infer_result->dtype == FDDataType::FP32 ||
 | |
|                infer_result->dtype == FDDataType::INT32,
 | |
|            "Require the data type of output is int64, fp32 or int32, but now "
 | |
|            "it's %s.",
 | |
|            Str(infer_result->dtype).c_str());
 | |
|   result->Clear();
 | |
|   FDASSERT(infer_result->shape[0] == 1, "Only support batch size = 1.");
 | |
| 
 | |
|   int64_t infer_batch = infer_result->shape[0];
 | |
|   int64_t infer_channel = 0;
 | |
|   int64_t infer_height = 0;
 | |
|   int64_t infer_width = 0;
 | |
| 
 | |
|   if (is_with_argmax) {
 | |
|     infer_channel = 1;
 | |
|     infer_height = infer_result->shape[1];
 | |
|     infer_width = infer_result->shape[2];
 | |
|   } else {
 | |
|     infer_channel = infer_result->shape[1];
 | |
|     infer_height = infer_result->shape[2];
 | |
|     infer_width = infer_result->shape[3];
 | |
|   }
 | |
|   int64_t infer_chw = infer_channel * infer_height * infer_width;
 | |
| 
 | |
|   bool is_resized = false;
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT(iter_ipt != im_info.end(), "Cannot find input_shape from im_info.");
 | |
|   int ipt_h = iter_ipt->second[0];
 | |
|   int ipt_w = iter_ipt->second[1];
 | |
|   if (ipt_h != infer_height || ipt_w != infer_width) {
 | |
|     is_resized = true;
 | |
|   }
 | |
| 
 | |
|   if (!is_with_softmax && apply_softmax) {
 | |
|     Softmax(*infer_result, infer_result, 1);
 | |
|   }
 | |
| 
 | |
|   if (!is_with_argmax) {
 | |
|     // output without argmax
 | |
|     result->contain_score_map = true;
 | |
| 
 | |
|     std::vector<int64_t> dim{0, 2, 3, 1};
 | |
|     Transpose(*infer_result, infer_result, dim);
 | |
|   }
 | |
|   // batch always 1, so ignore
 | |
|   infer_result->shape = {infer_height, infer_width, infer_channel};
 | |
| 
 | |
|   // for resize mat below
 | |
|   FDTensor new_infer_result;
 | |
|   Mat* mat = nullptr;
 | |
|   std::vector<float_t>* fp32_result_buffer = nullptr;
 | |
|   if (is_resized) {
 | |
|     if (infer_result->dtype == FDDataType::INT64 ||
 | |
|         infer_result->dtype == FDDataType::INT32) {
 | |
|       if (infer_result->dtype == FDDataType::INT64) {
 | |
|         int64_t* infer_result_buffer =
 | |
|             static_cast<int64_t*>(infer_result->Data());
 | |
|         // cv::resize don't support `CV_8S` or `CV_32S`
 | |
|         // refer to https://github.com/opencv/opencv/issues/20991
 | |
|         // https://github.com/opencv/opencv/issues/7862
 | |
|         fp32_result_buffer = new std::vector<float_t>(
 | |
|             infer_result_buffer, infer_result_buffer + infer_chw);
 | |
|       }
 | |
|       if (infer_result->dtype == FDDataType::INT32) {
 | |
|         int32_t* infer_result_buffer =
 | |
|             static_cast<int32_t*>(infer_result->Data());
 | |
|         // cv::resize don't support `CV_8S` or `CV_32S`
 | |
|         // refer to https://github.com/opencv/opencv/issues/20991
 | |
|         // https://github.com/opencv/opencv/issues/7862
 | |
|         fp32_result_buffer = new std::vector<float_t>(
 | |
|             infer_result_buffer, infer_result_buffer + infer_chw);
 | |
|       }
 | |
|       infer_result->Resize(infer_result->shape, FDDataType::FP32);
 | |
|       infer_result->SetExternalData(
 | |
|           infer_result->shape, FDDataType::FP32,
 | |
|           static_cast<void*>(fp32_result_buffer->data()));
 | |
|     }
 | |
|     mat = new Mat(CreateFromTensor(*infer_result));
 | |
|     Resize::Run(mat, ipt_w, ipt_h, -1.0f, -1.0f, 1);
 | |
|     mat->ShareWithTensor(&new_infer_result);
 | |
|     result->shape = new_infer_result.shape;
 | |
|   } else {
 | |
|     result->shape = infer_result->shape;
 | |
|   }
 | |
|   // output shape is 2-D HW layout, so out_num = H * W
 | |
|   int out_num =
 | |
|       std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
 | |
|                       std::multiplies<int>());
 | |
|   result->Resize(out_num);
 | |
|   if (result->contain_score_map) {
 | |
|     // output with label_map and score_map
 | |
|     int32_t* argmax_infer_result_buffer = nullptr;
 | |
|     float_t* score_infer_result_buffer = nullptr;
 | |
|     FDTensor argmax_infer_result;
 | |
|     FDTensor max_score_result;
 | |
|     std::vector<int64_t> reduce_dim{-1};
 | |
|     // argmax
 | |
|     if (is_resized) {
 | |
|       ArgMax(new_infer_result, &argmax_infer_result, -1, FDDataType::INT32);
 | |
|       Max(new_infer_result, &max_score_result, reduce_dim);
 | |
|     } else {
 | |
|       ArgMax(*infer_result, &argmax_infer_result, -1, FDDataType::INT32);
 | |
|       Max(*infer_result, &max_score_result, reduce_dim);
 | |
|     }
 | |
|     argmax_infer_result_buffer =
 | |
|         static_cast<int32_t*>(argmax_infer_result.Data());
 | |
|     score_infer_result_buffer = static_cast<float_t*>(max_score_result.Data());
 | |
|     for (int i = 0; i < out_num; i++) {
 | |
|       result->label_map[i] =
 | |
|           static_cast<uint8_t>(*(argmax_infer_result_buffer + i));
 | |
|     }
 | |
|     std::memcpy(result->score_map.data(), score_infer_result_buffer,
 | |
|                 out_num * sizeof(float_t));
 | |
| 
 | |
|   } else {
 | |
|     // output only with label_map
 | |
|     if (is_resized) {
 | |
|       float_t* infer_result_buffer =
 | |
|           static_cast<float_t*>(new_infer_result.Data());
 | |
|       for (int i = 0; i < out_num; i++) {
 | |
|         result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
 | |
|       }
 | |
|     } else {
 | |
|       if (infer_result->dtype == FDDataType::INT64) {
 | |
|         const int64_t* infer_result_buffer =
 | |
|             static_cast<const int64_t*>(infer_result->Data());
 | |
|         for (int i = 0; i < out_num; i++) {
 | |
|           result->label_map[i] =
 | |
|               static_cast<uint8_t>(*(infer_result_buffer + i));
 | |
|         }
 | |
|       }
 | |
|       if (infer_result->dtype == FDDataType::INT32) {
 | |
|         const int32_t* infer_result_buffer =
 | |
|             static_cast<const int32_t*>(infer_result->Data());
 | |
|         for (int i = 0; i < out_num; i++) {
 | |
|           result->label_map[i] =
 | |
|               static_cast<uint8_t>(*(infer_result_buffer + i));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // HWC remove C
 | |
|   result->shape.erase(result->shape.begin() + 2);
 | |
|   delete fp32_result_buffer;
 | |
|   delete mat;
 | |
|   mat = nullptr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> processed_data(1);
 | |
| 
 | |
|   std::map<std::string, std::array<int, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<int>(mat.Height()),
 | |
|                             static_cast<int>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &(processed_data[0]))) {
 | |
|     FDERROR << "Failed to preprocess input data while using model:"
 | |
|             << ModelName() << "." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   std::vector<FDTensor> infer_result(1);
 | |
|   if (!Infer(processed_data, &infer_result)) {
 | |
|     FDERROR << "Failed to inference while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!Postprocess(&infer_result[0], result, im_info)) {
 | |
|     FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace segmentation
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |