mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| #include "fastdeploy/fastdeploy_model.h"
 | |
| #include "fastdeploy/vision/common/processors/transform.h"
 | |
| #include "fastdeploy/vision/common/result.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| namespace facedet {
 | |
| 
 | |
| class FASTDEPLOY_DECL YOLOv5Face : public FastDeployModel {
 | |
|  public:
 | |
|   YOLOv5Face(const std::string& model_file, const std::string& params_file = "",
 | |
|              const RuntimeOption& custom_option = RuntimeOption(),
 | |
|              const ModelFormat& model_format = ModelFormat::ONNX);
 | |
| 
 | |
|   std::string ModelName() const { return "yolov5-face"; }
 | |
| 
 | |
|   virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
 | |
|                        float conf_threshold = 0.25,
 | |
|                        float nms_iou_threshold = 0.5);
 | |
| 
 | |
|   // tuple of (width, height)
 | |
|   std::vector<int> size;
 | |
|   // padding value, size should be same with Channels
 | |
|   std::vector<float> padding_value;
 | |
|   // only pad to the minimum rectange which height and width is times of stride
 | |
|   bool is_mini_pad;
 | |
|   // while is_mini_pad = false and is_no_pad = true, will resize the image to
 | |
|   // the set size
 | |
|   bool is_no_pad;
 | |
|   // if is_scale_up is false, the input image only can be zoom out, the maximum
 | |
|   // resize scale cannot exceed 1.0
 | |
|   bool is_scale_up;
 | |
|   // padding stride, for is_mini_pad
 | |
|   int stride;
 | |
|   // setup the number of landmarks for per face (if have), default 5 in
 | |
|   // official yolov5face note that, the outupt tensor's shape must be:
 | |
|   // (1,n,4+1+2*landmarks_per_face+1=box+obj+landmarks+cls)
 | |
|   int landmarks_per_face;
 | |
| 
 | |
|  private:
 | |
|   bool Initialize();
 | |
| 
 | |
|   bool Preprocess(Mat* mat, FDTensor* outputs,
 | |
|                   std::map<std::string, std::array<float, 2>>* im_info);
 | |
| 
 | |
|   bool Postprocess(FDTensor& infer_result, FaceDetectionResult* result,
 | |
|                    const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|                    float conf_threshold, float nms_iou_threshold);
 | |
| 
 | |
|   bool IsDynamicInput() const { return is_dynamic_input_; }
 | |
| 
 | |
|   bool is_dynamic_input_;
 | |
| };
 | |
| 
 | |
| }  // namespace facedet
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
