mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			293 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/facedet/contrib/retinaface.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| namespace facedet {
 | |
| 
 | |
| struct RetinaAnchor {
 | |
|   float cx;
 | |
|   float cy;
 | |
|   float s_kx;
 | |
|   float s_ky;
 | |
| };
 | |
| 
 | |
| void GenerateRetinaAnchors(const std::vector<int>& size,
 | |
|                            const std::vector<int>& downsample_strides,
 | |
|                            const std::vector<std::vector<int>>& min_sizes,
 | |
|                            std::vector<RetinaAnchor>* anchors) {
 | |
|   // size: tuple of input (width, height)
 | |
|   // downsample_strides: downsample strides (steps), e.g (8,16,32)
 | |
|   // min_sizes: width and height for each anchor,
 | |
|   // e.g {{16, 32}, {64, 128}, {256, 512}}
 | |
|   int h = size[1];
 | |
|   int w = size[0];
 | |
|   std::vector<std::vector<int>> feature_maps;
 | |
|   for (auto s : downsample_strides) {
 | |
|     feature_maps.push_back(
 | |
|         {static_cast<int>(
 | |
|              std::ceil(static_cast<float>(h) / static_cast<float>(s))),
 | |
|          static_cast<int>(
 | |
|              std::ceil(static_cast<float>(w) / static_cast<float>(s)))});
 | |
|   }
 | |
| 
 | |
|   (*anchors).clear();
 | |
|   const size_t num_feature_map = feature_maps.size();
 | |
|   // reference: layers/functions/prior_box.py#L21
 | |
|   for (size_t k = 0; k < num_feature_map; ++k) {
 | |
|     auto f_map = feature_maps.at(k);       // e.g [640//8,640//8]
 | |
|     auto tmp_min_sizes = min_sizes.at(k);  // e.g [8,16]
 | |
|     int f_h = f_map.at(0);
 | |
|     int f_w = f_map.at(1);
 | |
|     for (size_t i = 0; i < f_h; ++i) {
 | |
|       for (size_t j = 0; j < f_w; ++j) {
 | |
|         for (auto min_size : tmp_min_sizes) {
 | |
|           float s_kx =
 | |
|               static_cast<float>(min_size) / static_cast<float>(w);  // e.g 16/w
 | |
|           float s_ky =
 | |
|               static_cast<float>(min_size) / static_cast<float>(h);  // e.g 16/h
 | |
|           // (x + 0.5) * step / w normalized loc mapping to input width
 | |
|           // (y + 0.5) * step / h normalized loc mapping to input height
 | |
|           float s = static_cast<float>(downsample_strides.at(k));
 | |
|           float cx = (static_cast<float>(j) + 0.5f) * s / static_cast<float>(w);
 | |
|           float cy = (static_cast<float>(i) + 0.5f) * s / static_cast<float>(h);
 | |
|           (*anchors).emplace_back(
 | |
|               RetinaAnchor{cx, cy, s_kx, s_ky});  // without clip
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| RetinaFace::RetinaFace(const std::string& model_file,
 | |
|                        const std::string& params_file,
 | |
|                        const RuntimeOption& custom_option,
 | |
|                        const ModelFormat& model_format) {
 | |
|   if (model_format == ModelFormat::ONNX) {
 | |
|     valid_cpu_backends = {Backend::ORT};  
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};  
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   }
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool RetinaFace::Initialize() {
 | |
|   // parameters for preprocess
 | |
|   size = {640, 640};
 | |
|   variance = {0.1f, 0.2f};
 | |
|   downsample_strides = {8, 16, 32};
 | |
|   min_sizes = {{16, 32}, {64, 128}, {256, 512}};
 | |
|   landmarks_per_face = 5;
 | |
| 
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // Check if the input shape is dynamic after Runtime already initialized,
 | |
|   is_dynamic_input_ = false;
 | |
|   auto shape = InputInfoOfRuntime(0).shape;
 | |
|   for (int i = 0; i < shape.size(); ++i) {
 | |
|     // if height or width is dynamic
 | |
|     if (i >= 2 && shape[i] <= 0) {
 | |
|       is_dynamic_input_ = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RetinaFace::Preprocess(
 | |
|     Mat* mat, FDTensor* output,
 | |
|     std::map<std::string, std::array<float, 2>>* im_info) {
 | |
|   // retinaface's preprocess steps
 | |
|   // 1. Resize
 | |
|   // 2. Convert(opencv style) or Normalize
 | |
|   // 3. HWC->CHW
 | |
|   int resize_w = size[0];
 | |
|   int resize_h = size[1];
 | |
|   if (resize_h != mat->Height() || resize_w != mat->Width()) {
 | |
|     Resize::Run(mat, resize_w, resize_h);
 | |
|   }
 | |
| 
 | |
|   // Compute `result = mat * alpha + beta` directly by channel
 | |
|   // Reference: detect.py#L94
 | |
|   std::vector<float> alpha = {1.f, 1.f, 1.f};
 | |
|   std::vector<float> beta = {-104.f, -117.f, -123.f};  // BGR;
 | |
|   Convert::Run(mat, alpha, beta);
 | |
| 
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                 static_cast<float>(mat->Width())};
 | |
| 
 | |
|   HWC2CHW::Run(mat);
 | |
|   Cast::Run(mat, "float");
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);  // reshape to n, h, w, c
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RetinaFace::Postprocess(
 | |
|     std::vector<FDTensor>& infer_result, FaceDetectionResult* result,
 | |
|     const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|     float conf_threshold, float nms_iou_threshold) {
 | |
|   // retinaface has 3 output tensors, boxes & conf & landmarks
 | |
|   FDASSERT(
 | |
|       (infer_result.size() == 3),
 | |
|       "The default number of output tensor must be 3 according to retinaface.");
 | |
|   FDTensor& boxes_tensor = infer_result.at(0);      // (1,n,4)
 | |
|   FDTensor& conf_tensor = infer_result.at(1);       // (1,n,2)
 | |
|   FDTensor& landmarks_tensor = infer_result.at(2);  // (1,n,10)
 | |
|   FDASSERT((boxes_tensor.shape[0] == 1), "Only support batch =1 now.");
 | |
|   if (boxes_tensor.dtype != FDDataType::FP32) {
 | |
|     FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   result->Clear();
 | |
|   // must be setup landmarks_per_face before reserve
 | |
|   result->landmarks_per_face = landmarks_per_face;
 | |
|   result->Reserve(boxes_tensor.shape[1]);
 | |
| 
 | |
|   float* boxes_ptr = static_cast<float*>(boxes_tensor.Data());
 | |
|   float* conf_ptr = static_cast<float*>(conf_tensor.Data());
 | |
|   float* landmarks_ptr = static_cast<float*>(landmarks_tensor.Data());
 | |
|   const size_t num_bboxes = boxes_tensor.shape[1];  // n
 | |
|   // fetch original image shape
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT((iter_ipt != im_info.end()),
 | |
|            "Cannot find input_shape from im_info.");
 | |
|   float ipt_h = iter_ipt->second[0];
 | |
|   float ipt_w = iter_ipt->second[1];
 | |
| 
 | |
|   // generate anchors with dowmsample strides
 | |
|   std::vector<RetinaAnchor> anchors;
 | |
|   GenerateRetinaAnchors(size, downsample_strides, min_sizes, &anchors);
 | |
| 
 | |
|   // decode bounding boxes
 | |
|   for (size_t i = 0; i < num_bboxes; ++i) {
 | |
|     float confidence = conf_ptr[2 * i + 1];
 | |
|     // filter boxes by conf_threshold
 | |
|     if (confidence <= conf_threshold) {
 | |
|       continue;
 | |
|     }
 | |
|     float prior_cx = anchors.at(i).cx;
 | |
|     float prior_cy = anchors.at(i).cy;
 | |
|     float prior_s_kx = anchors.at(i).s_kx;
 | |
|     float prior_s_ky = anchors.at(i).s_ky;
 | |
| 
 | |
|     // fetch offsets (dx,dy,dw,dh)
 | |
|     float dx = boxes_ptr[4 * i + 0];
 | |
|     float dy = boxes_ptr[4 * i + 1];
 | |
|     float dw = boxes_ptr[4 * i + 2];
 | |
|     float dh = boxes_ptr[4 * i + 3];
 | |
|     // reference: Pytorch_Retinaface/utils/box_utils.py
 | |
|     float x = prior_cx + dx * variance[0] * prior_s_kx;
 | |
|     float y = prior_cy + dy * variance[0] * prior_s_ky;
 | |
|     float w = prior_s_kx * std::exp(dw * variance[1]);
 | |
|     float h = prior_s_ky * std::exp(dh * variance[1]);  // (0.~1.)
 | |
|     // from (x,y,w,h) to (x1,y1,x2,y2)
 | |
|     float x1 = (x - w / 2.f) * ipt_w;
 | |
|     float y1 = (y - h / 2.f) * ipt_h;
 | |
|     float x2 = (x + w / 2.f) * ipt_w;
 | |
|     float y2 = (y + h / 2.f) * ipt_h;
 | |
|     result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
 | |
|     result->scores.push_back(confidence);
 | |
|     // decode landmarks (default 5 landmarks)
 | |
|     if (landmarks_per_face > 0) {
 | |
|       // reference: utils/box_utils.py#L241
 | |
|       for (size_t j = 0; j < landmarks_per_face * 2; j += 2) {
 | |
|         float ldx = landmarks_ptr[i * (landmarks_per_face * 2) + (j + 0)];
 | |
|         float ldy = landmarks_ptr[i * (landmarks_per_face * 2) + (j + 1)];
 | |
|         float lx = (prior_cx + ldx * variance[0] * prior_s_kx) * ipt_w;
 | |
|         float ly = (prior_cy + ldy * variance[0] * prior_s_ky) * ipt_h;
 | |
|         result->landmarks.emplace_back(std::array<float, 2>{lx, ly});
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (result->boxes.size() == 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   utils::NMS(result, nms_iou_threshold);
 | |
| 
 | |
|   // scale and clip box
 | |
|   for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|     result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
 | |
|     result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
 | |
|     result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
 | |
|     result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
 | |
|     result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|     result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|     result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|     result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|   }
 | |
|   // scale and clip landmarks
 | |
|   for (size_t i = 0; i < result->landmarks.size(); ++i) {
 | |
|     result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f);
 | |
|     result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f);
 | |
|     result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
 | |
|     result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RetinaFace::Predict(cv::Mat* im, FaceDetectionResult* result,
 | |
|                          float conf_threshold, float nms_iou_threshold) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> input_tensors(1);
 | |
| 
 | |
|   std::map<std::string, std::array<float, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<float>(mat.Height()),
 | |
|                             static_cast<float>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<float>(mat.Height()),
 | |
|                              static_cast<float>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   input_tensors[0].name = InputInfoOfRuntime(0).name;
 | |
|   std::vector<FDTensor> output_tensors;
 | |
|   if (!Infer(input_tensors, &output_tensors)) {
 | |
|     FDERROR << "Failed to inference." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Postprocess(output_tensors, result, im_info, conf_threshold,
 | |
|                    nms_iou_threshold)) {
 | |
|     FDERROR << "Failed to post process." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace facedet
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
