mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/detection/ppdet/yolov3.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| 
 | |
| YOLOv3::YOLOv3(const std::string& model_file, const std::string& params_file,
 | |
|                const std::string& config_file,
 | |
|                const RuntimeOption& custom_option,
 | |
|                const ModelFormat& model_format) {
 | |
|   config_file_ = config_file;
 | |
|   valid_cpu_backends = {Backend::OPENVINO, Backend::ORT, Backend::PDINFER};
 | |
|   valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool YOLOv3::Preprocess(Mat* mat, std::vector<FDTensor>* outputs) {
 | |
|   int origin_w = mat->Width();
 | |
|   int origin_h = mat->Height();
 | |
|   for (size_t i = 0; i < processors_.size(); ++i) {
 | |
|     if (!(*(processors_[i].get()))(mat)) {
 | |
|       FDERROR << "Failed to process image data in " << processors_[i]->Name()
 | |
|               << "." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   outputs->resize(3);
 | |
|   (*outputs)[0].Allocate({1, 2}, FDDataType::FP32, "im_shape");
 | |
|   (*outputs)[2].Allocate({1, 2}, FDDataType::FP32, "scale_factor");
 | |
|   float* ptr0 = static_cast<float*>((*outputs)[0].MutableData());
 | |
|   ptr0[0] = mat->Height();
 | |
|   ptr0[1] = mat->Width();
 | |
|   float* ptr2 = static_cast<float*>((*outputs)[2].MutableData());
 | |
|   ptr2[0] = mat->Height() * 1.0 / origin_h;
 | |
|   ptr2[1] = mat->Width() * 1.0 / origin_w;
 | |
|   (*outputs)[1].name = "image";
 | |
|   mat->ShareWithTensor(&((*outputs)[1]));
 | |
|   // reshape to [1, c, h, w]
 | |
|   (*outputs)[1].shape.insert((*outputs)[1].shape.begin(), 1);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
