mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			31 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			31 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include "fastdeploy/pybind/main.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| void BindPaddleClas(pybind11::module& m) {
 | |
|   pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
 | |
|       m, "PaddleClasModel")
 | |
|       .def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
 | |
|                           ModelFormat>())
 | |
|       .def("predict", [](vision::classification::PaddleClasModel& self,
 | |
|                          pybind11::array& data, int topk = 1) {
 | |
|         auto mat = PyArrayToCvMat(data);
 | |
|         vision::ClassifyResult res;
 | |
|         self.Predict(&mat, &res, topk);
 | |
|         return res;
 | |
|       });
 | |
| }
 | |
| }  // namespace fastdeploy
 | 
