mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			157 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/classification/ppcls/model.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| #include "yaml-cpp/yaml.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace classification {
 | |
| 
 | |
| PaddleClasModel::PaddleClasModel(const std::string& model_file,
 | |
|                                  const std::string& params_file,
 | |
|                                  const std::string& config_file,
 | |
|                                  const RuntimeOption& custom_option,
 | |
|                                  const ModelFormat& model_format) {
 | |
|   config_file_ = config_file;
 | |
|   valid_cpu_backends = {Backend::ORT, Backend::OPENVINO, Backend::PDINFER,
 | |
|                         Backend::LITE};
 | |
|   valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool PaddleClasModel::Initialize() {
 | |
|   if (!BuildPreprocessPipelineFromConfig()) {
 | |
|     FDERROR << "Failed to build preprocess pipeline from configuration file."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleClasModel::BuildPreprocessPipelineFromConfig() {
 | |
|   processors_.clear();
 | |
|   YAML::Node cfg;
 | |
|   try {
 | |
|     cfg = YAML::LoadFile(config_file_);
 | |
|   } catch (YAML::BadFile& e) {
 | |
|     FDERROR << "Failed to load yaml file " << config_file_
 | |
|             << ", maybe you should check this file." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
 | |
|   processors_.push_back(std::make_shared<BGR2RGB>());
 | |
|   for (const auto& op : preprocess_cfg) {
 | |
|     FDASSERT(op.IsMap(),
 | |
|              "Require the transform information in yaml be Map type.");
 | |
|     auto op_name = op.begin()->first.as<std::string>();
 | |
|     if (op_name == "ResizeImage") {
 | |
|       int target_size = op.begin()->second["resize_short"].as<int>();
 | |
|       bool use_scale = false;
 | |
|       int interp = 1;
 | |
|       processors_.push_back(
 | |
|           std::make_shared<ResizeByShort>(target_size, 1, use_scale));
 | |
|     } else if (op_name == "CropImage") {
 | |
|       int width = op.begin()->second["size"].as<int>();
 | |
|       int height = op.begin()->second["size"].as<int>();
 | |
|       processors_.push_back(std::make_shared<CenterCrop>(width, height));
 | |
|     } else if (op_name == "NormalizeImage") {
 | |
|       auto mean = op.begin()->second["mean"].as<std::vector<float>>();
 | |
|       auto std = op.begin()->second["std"].as<std::vector<float>>();
 | |
|       auto scale = op.begin()->second["scale"].as<float>();
 | |
|       FDASSERT((scale - 0.00392157) < 1e-06 && (scale - 0.00392157) > -1e-06,
 | |
|                "Only support scale in Normalize be 0.00392157, means the pixel "
 | |
|                "is in range of [0, 255].");
 | |
|       processors_.push_back(std::make_shared<Normalize>(mean, std));
 | |
|     } else if (op_name == "ToCHWImage") {
 | |
|       processors_.push_back(std::make_shared<HWC2CHW>());
 | |
|     } else {
 | |
|       FDERROR << "Unexcepted preprocess operator: " << op_name << "."
 | |
|               << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleClasModel::Preprocess(Mat* mat, FDTensor* output) {
 | |
|   for (size_t i = 0; i < processors_.size(); ++i) {
 | |
|     if (!(*(processors_[i].get()))(mat)) {
 | |
|       FDERROR << "Failed to process image data in " << processors_[i]->Name()
 | |
|               << "." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int channel = mat->Channels();
 | |
|   int width = mat->Width();
 | |
|   int height = mat->Height();
 | |
|   output->name = InputInfoOfRuntime(0).name;
 | |
|   output->SetExternalData({1, channel, height, width}, FDDataType::FP32,
 | |
|                           mat->GetCpuMat()->ptr());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleClasModel::Postprocess(const FDTensor& infer_result,
 | |
|                                   ClassifyResult* result, int topk) {
 | |
|   int num_classes = infer_result.shape[1];
 | |
|   const float* infer_result_buffer =
 | |
|       reinterpret_cast<const float*>(infer_result.Data());
 | |
|   topk = std::min(num_classes, topk);
 | |
|   result->label_ids =
 | |
|       utils::TopKIndices(infer_result_buffer, num_classes, topk);
 | |
|   result->scores.resize(topk);
 | |
|   for (int i = 0; i < topk; ++i) {
 | |
|     result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> processed_data(1);
 | |
|   if (!Preprocess(&mat, &(processed_data[0]))) {
 | |
|     FDERROR << "Failed to preprocess input data while using model:"
 | |
|             << ModelName() << "." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::vector<FDTensor> infer_result(1);
 | |
|   if (!Infer(processed_data, &infer_result)) {
 | |
|     FDERROR << "Failed to inference while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Postprocess(infer_result[0], result, topk)) {
 | |
|     FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace classification
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
