Files
FastDeploy/custom_ops/gpu_ops/flash_mask_attn/softmax.hpp
yangjianfengo1 40f7f3e0d8 [New Feature] fa3 支持flash mask (#3184)
* 支持flash mask

* 修改test_flash_mask

* 修改test.sh
2025-08-05 12:20:48 +08:00

207 lines
8.3 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/numeric_types.h>
#include "utils.hpp"
using namespace cute;
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); mi++) {
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
summary(mi) = op(summary(mi), tensor(mi, ni));
}
}
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
#pragma unroll
for (int i = 0; i < size(dst); i++){
dst(i) = Allreduce<4>::run(src(i), op);
}
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
thread_reduce_<zero_init>(tensor, summary, op);
quad_allreduce_(summary, summary, op);
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
MaxOp<float> max_op;
reduce_<zero_init>(tensor, max, max_op);
}
template<bool zero_init=true, bool warp_reduce=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
SumOp<float> sum_op;
thread_reduce_<zero_init>(tensor, sum, sum_op);
if constexpr (warp_reduce) { quad_allreduce_(sum, sum, sum_op); }
}
__forceinline__ __device__ __half2 half_exp(__half2 x) {
uint32_t tmp_out, tmp_in;
tmp_in = reinterpret_cast<uint32_t&>(x);
asm ("ex2.approx.f16x2 %0, %1;\n"
: "=r"(tmp_out)
: "r"(tmp_in));
__half2 out = reinterpret_cast<__half2&>(tmp_out);
return out;
}
// Apply the exp to all the elements.
template <bool zero_init=false, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
MaxOp<float> max_op;
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
max(mi) = max_op(max(mi), tensor(mi, ni));
}
max(mi) = Allreduce<4>::run(max(mi), max_op);
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
sum(mi) = 0;
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
sum(mi) += tensor(mi, ni);
}
}
}
template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__forceinline__ __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
const float max_scaled = max(mi) * scale;
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
}
}
}
template <int kNRows>
struct Softmax {
using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
TensorT row_max, row_sum;
CUTLASS_DEVICE Softmax() {};
template<bool Is_first, bool Check_inf=false, typename Tensor0>
__forceinline__ __device__ TensorT max(Tensor0 &acc_s, float softmax_scale_log2) {
Tensor scores = make_tensor(acc_s.data(), convert_layout_acc_rowcol(acc_s.layout()));
static_assert(decltype(size<0>(scores))::value == kNRows);
TensorT scores_scale;
if constexpr (Is_first) {
reduce_max</*zero_init=*/true>(scores, row_max);
cute::fill(scores_scale, 1.f);
} else {
Tensor scores_max_prev = make_fragment_like(row_max);
cute::copy(row_max, scores_max_prev);
reduce_max</*zero_init=*/false>(scores, row_max);
#pragma unroll
for (int mi = 0; mi < size(row_max); ++mi) {
float scores_max_cur = row_max(mi);
scores_scale(mi) = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
row_sum(mi) *= scores_scale(mi);
}
}
return scores_scale;
};
template<bool Is_first, typename Tensor0>
__forceinline__ __device__ TensorT online_softmax(Tensor0 &acc_s, float softmax_scale_log2) {
Tensor scores = make_tensor(acc_s.data(), convert_layout_acc_rowcol(acc_s.layout()));
static_assert(decltype(size<0>(scores))::value == kNRows);
TensorT scores_scale;
if constexpr (Is_first) {
reduce_max</*zero_init=*/true>(scores, row_max);
scale_apply_exp2(scores, row_max, softmax_scale_log2);
reduce_sum</*zero_init=*/true, /*warp_reduce=*/false>(scores, row_sum);
cute::fill(scores_scale, 1.f);
} else {
scale_apply_exp2(scores, row_max, softmax_scale_log2);
reduce_sum</*zero_init=*/false, /*warp_reduce=*/false>(scores, row_sum);
}
return scores_scale;
};
__forceinline__ __device__ TensorT finalize(float softmax_scale_log2) {
SumOp<float> sum_op;
quad_allreduce_(row_sum, row_sum, sum_op);
TensorT scores_scale;
#pragma unroll
for (int mi = 0; mi < size(row_max); ++mi) {
float sum = row_sum(mi);
float inv_sum = 1.0f / sum;
row_sum(mi) = row_max(mi) * (softmax_scale_log2 * float(M_LN2)) + __logf(sum);
scores_scale(mi) = inv_sum;
}
return scores_scale;
};
template<typename Tensor1>
__forceinline__ __device__ void rescale_o(Tensor1 &acc_o, TensorT const &scores_scale) {
Tensor acc_o_rowcol = make_tensor(acc_o.data(), convert_layout_acc_rowcol(acc_o.layout()));
static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
#pragma unroll
for (int mi = 0; mi < size(row_max); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) {
acc_o_rowcol(mi, ni) *= scores_scale(mi);
}
}
};
};