Files
FastDeploy/custom_ops/gpu_ops/cutlass_kernels/cutlass_preprocessors.cu
2025-06-09 19:20:15 +08:00

794 lines
33 KiB
Plaintext

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "paddle/extension.h"
#include "paddle/phi/core/enforce.h"
#include "cutlass_kernels/cutlass_preprocessors.h"
#include "cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h"
namespace kernels
{
namespace cutlass_kernels
{
struct LayoutDetails
{
enum class Layout
{
UNKNOWN,
ROW_MAJOR,
COLUMN_MAJOR
};
Layout layoutB = Layout::UNKNOWN;
int rows_per_column_tile = 1;
int columns_interleaved = 1;
bool uses_imma_ldsm = false;
};
template <typename Layout>
struct getLayoutDetails
{
};
template <>
struct getLayoutDetails<cutlass::layout::RowMajor>
{
LayoutDetails operator()()
{
LayoutDetails layout_details;
layout_details.layoutB = LayoutDetails::Layout::ROW_MAJOR;
return layout_details;
}
};
template <>
struct getLayoutDetails<cutlass::layout::ColumnMajor>
{
LayoutDetails operator()()
{
LayoutDetails layout_details;
layout_details.layoutB = LayoutDetails::Layout::COLUMN_MAJOR;
return layout_details;
}
};
template <int RowsPerTile, int ColumnsInterleaved>
struct getLayoutDetails<cutlass::layout::ColumnMajorTileInterleave<RowsPerTile, ColumnsInterleaved>>
{
LayoutDetails operator()()
{
LayoutDetails layout_details;
layout_details.layoutB = LayoutDetails::Layout::COLUMN_MAJOR;
layout_details.rows_per_column_tile = RowsPerTile;
layout_details.columns_interleaved = ColumnsInterleaved;
return layout_details;
}
};
template <typename cutlassArch, typename TypeA, typename TypeB>
LayoutDetails getLayoutDetailsForArchAndQuantType()
{
using CompileTraits = cutlass::gemm::kernel::LayoutDetailsB<TypeA, TypeB, cutlassArch>;
using LayoutB = typename CompileTraits::Layout;
using MmaOperator = typename CompileTraits::Operator;
LayoutDetails details = getLayoutDetails<LayoutB>()();
details.uses_imma_ldsm = std::is_same<MmaOperator, cutlass::arch::OpMultiplyAddDequantizeInterleavedBToA>::value;
return details;
}
template <typename cutlassArch>
LayoutDetails getLayoutDetailsForArch(QuantType quant_type)
{
int const bits_per_weight_element = get_weight_quant_bits(quant_type);
LayoutDetails details;
switch (quant_type)
{
case QuantType::W8_A16:
details = getLayoutDetailsForArchAndQuantType<cutlassArch, cutlass::half_t, uint8_t>();
break;
case QuantType::W4_A16:
details = getLayoutDetailsForArchAndQuantType<cutlassArch, cutlass::half_t, cutlass::uint4b_t>();
break;
case QuantType::W4_AFP8:
details = getLayoutDetailsForArchAndQuantType<cutlassArch, cutlass::float_e4m3_t, cutlass::uint4b_t>();
break;
default: PADDLE_THROW("Unsupported quantization type");
}
return details;
}
LayoutDetails getLayoutDetailsForTransform(QuantType quant_type, int arch)
{
if (arch >= 70 && arch < 75)
{
return getLayoutDetailsForArch<cutlass::arch::Sm70>(quant_type);
}
else if (arch >= 75 && arch < 80)
{
return getLayoutDetailsForArch<cutlass::arch::Sm75>(quant_type);
}
else if (arch >= 80 && arch < 90)
{
return getLayoutDetailsForArch<cutlass::arch::Sm80>(quant_type);
}
else if (arch == 90)
{
return getLayoutDetailsForArch<cutlass::arch::Sm90>(quant_type);
}
else
{
PADDLE_ENFORCE(false, "Unsupported Arch");
return LayoutDetails();
}
}
// Permutes the rows of B in a way that is compatible with Turing+ architectures.
//
// Throws an error for other architectures.
// The data is permuted such that:
// For W8_A16, each group of 16 rows is permuted using the map below:
// 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15
// For W4_A16, each group of 32 rows is permuted using the map below:
// 0 1 8 9 16 17 24 25 2 3 10 11 18 19 26 27 4 5 12 13 20 21 28 29 6 7 14 15 22 23 30 31
// For W4_A8, see the map in the code. The idea is similar to above.
// The goal of this permutation is to ensure data ends up in the correct threads after
// we execute LDSM. It counteracts the effect of the data being of different widths.
// For more information about the expected layouts, see the MMA section in the PTX docs.
std::vector<int> get_permutation_map(QuantType quant_type)
{
if (quant_type == QuantType::W8_A16)
{
return {0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15};
}
else if (quant_type == QuantType::W4_A16)
{
return {0, 1, 8, 9, 16, 17, 24, 25, 2, 3, 10, 11, 18, 19, 26, 27, 4, 5, 12, 13, 20, 21, 28, 29, 6, 7, 14, 15,
22, 23, 30, 31};
}
else if (quant_type == QuantType::W4_AFP8)
{
return {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23, 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15,
28, 29, 30, 31};
}
else
{
PADDLE_THROW("Invalid quantization type for LDSM permutation");
}
}
void permute_B_rows_for_mixed_gemm(int8_t* permuted_quantized_tensor, int8_t const* quantized_tensor,
std::vector<size_t> const& shape, QuantType quant_type, int64_t const arch_version)
{
// We only want to run this step for weight only quant.
std::vector<int> row_permutation = get_permutation_map(quant_type);
PADDLE_ENFORCE(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D");
const size_t num_experts = shape.size() == 2 ? 1 : shape[0];
const size_t num_rows = shape.size() == 2 ? shape[0] : shape[1];
const size_t num_cols = shape.size() == 2 ? shape[1] : shape[2];
int const BITS_PER_ELT = get_weight_quant_bits(quant_type);
int const K = 16 / BITS_PER_ELT;
int const ELTS_PER_BYTE = 8 / BITS_PER_ELT;
int const ELTS_PER_REG = 32 / BITS_PER_ELT;
uint32_t const* input_byte_ptr = reinterpret_cast<uint32_t const*>(quantized_tensor);
uint32_t* output_byte_ptr = reinterpret_cast<uint32_t*>(permuted_quantized_tensor);
int MMA_SHAPE_N = 8;
int B_ROWS_PER_MMA = 8 * K;
int const elts_in_int32 = 32 / BITS_PER_ELT;
int const num_vec_cols = num_cols / elts_in_int32;
PADDLE_ENFORCE(
arch_version >= 75, "Unsupported Arch. Pre-volta not supported. Column interleave not needed on Volta.");
PADDLE_ENFORCE(num_rows % B_ROWS_PER_MMA == 0,
"Invalid shape for quantized tensor. Number of rows of quantized matrix must be a multiple of %d",
B_ROWS_PER_MMA);
PADDLE_ENFORCE(num_cols % MMA_SHAPE_N == 0,
"Invalid shape for quantized tensor. On turing/Ampere, the number of cols must be a multiple of %d.",
MMA_SHAPE_N);
PADDLE_ENFORCE(size_t(B_ROWS_PER_MMA) == row_permutation.size(), "Unexpected number of LDSM rows permuted.");
for (int expert = 0; expert < num_experts; ++expert)
{
const int64_t matrix_offset = expert * int64_t(num_rows) * int64_t(num_vec_cols);
for (int base_row = 0; base_row < num_rows; base_row += B_ROWS_PER_MMA)
{
for (int tile_row = 0; tile_row < B_ROWS_PER_MMA; ++tile_row)
{
for (int write_col = 0; write_col < num_vec_cols; ++write_col)
{
int const write_row = base_row + tile_row;
int const tile_read_row = row_permutation[tile_row];
int const read_row = base_row + tile_read_row;
int const read_col = write_col;
const int64_t read_offset = matrix_offset + int64_t(read_row) * num_vec_cols + read_col;
const int64_t write_offset = matrix_offset + int64_t(write_row) * num_vec_cols + write_col;
output_byte_ptr[write_offset] = input_byte_ptr[read_offset];
}
}
}
}
}
// We need to use this transpose to correctly handle packed int4 and int8 data
// The reason this code is relatively complex is that the "trivial" loops took a substantial
// amount of time to transpose leading to long preprocessing times. This seemed to be a big
// issue for relatively large models.
template <QuantType quant_type>
void subbyte_transpose_impl(
int8_t* transposed_quantized_tensor, int8_t const* quantized_tensor, std::vector<size_t> const& shape)
{
constexpr int bits_per_elt = get_weight_quant_bits(quant_type);
PADDLE_ENFORCE(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D");
const size_t num_experts = shape.size() == 2 ? 1 : shape[0];
const size_t num_rows = shape.size() == 2 ? shape[0] : shape[1];
const size_t num_cols = shape.size() == 2 ? shape[1] : shape[2];
const size_t col_bytes = num_cols * bits_per_elt / 8;
const size_t col_bytes_trans = num_rows * bits_per_elt / 8;
const size_t num_bytes = size_t(num_experts) * num_rows * col_bytes;
uint8_t const* input_byte_ptr = reinterpret_cast<uint8_t const*>(quantized_tensor);
uint8_t* output_byte_ptr = reinterpret_cast<uint8_t*>(transposed_quantized_tensor);
static constexpr int ELTS_PER_BYTE = 8 / bits_per_elt;
static constexpr int M_TILE_L1 = 64;
static constexpr int N_TILE_L1 = M_TILE_L1 / ELTS_PER_BYTE;
uint8_t cache_buf[M_TILE_L1][N_TILE_L1];
static constexpr int VECTOR_WIDTH = std::min(32, N_TILE_L1);
// We assume the dims are a multiple of vector width. Our kernels only handle dims which are multiples
// of 64 for weight-only quantization. As a result, this seemed like a reasonable tradeoff because it
// allows GCC to emit vector instructions.
PADDLE_ENFORCE(!(col_bytes_trans % VECTOR_WIDTH) && !(col_bytes % VECTOR_WIDTH),
"Number of bytes for rows and cols must be a multiple of %d. However, num_rows_bytes = %ld and "
"num_col_bytes = %ld.",
VECTOR_WIDTH, col_bytes_trans, col_bytes);
int const num_m_tiles = (num_rows + M_TILE_L1 - 1) / M_TILE_L1;
int const num_n_tiles = (col_bytes + N_TILE_L1 - 1) / N_TILE_L1;
for (size_t expert = 0; expert < num_experts; ++expert)
{
const size_t matrix_offset = expert * num_rows * col_bytes;
for (size_t row_tile_start = 0; row_tile_start < num_rows; row_tile_start += M_TILE_L1)
{
for (size_t col_tile_start_byte = 0; col_tile_start_byte < col_bytes; col_tile_start_byte += N_TILE_L1)
{
int const row_limit = std::min(row_tile_start + M_TILE_L1, num_rows);
int const col_limit = std::min(col_tile_start_byte + N_TILE_L1, col_bytes);
for (int ii = 0; ii < M_TILE_L1; ++ii)
{
int const row = row_tile_start + ii;
for (int jj = 0; jj < N_TILE_L1; jj += VECTOR_WIDTH)
{
int const col = col_tile_start_byte + jj;
const size_t logical_src_offset = matrix_offset + row * col_bytes + col;
if (row < row_limit && col < col_limit)
{
for (int v = 0; v < VECTOR_WIDTH; ++v)
{
cache_buf[ii][jj + v] = input_byte_ptr[logical_src_offset + v];
}
}
}
}
if constexpr (bits_per_elt == 8)
{
for (int ii = 0; ii < M_TILE_L1; ++ii)
{
for (int jj = ii + 1; jj < N_TILE_L1; ++jj)
{
std::swap(cache_buf[ii][jj], cache_buf[jj][ii]);
}
}
}
else if constexpr (bits_per_elt == 4)
{
for (int ii = 0; ii < M_TILE_L1; ++ii)
{
// Using M_TILE_L1 here is deliberate since we assume that the cache tile
// is square in the number of elements (not necessarily the number of bytes).
for (int jj = ii + 1; jj < M_TILE_L1; ++jj)
{
int const ii_byte = ii / ELTS_PER_BYTE;
int const ii_bit_offset = ii % ELTS_PER_BYTE;
int const jj_byte = jj / ELTS_PER_BYTE;
int const jj_bit_offset = jj % ELTS_PER_BYTE;
uint8_t src_elt = 0xF & (cache_buf[ii][jj_byte] >> (4 * jj_bit_offset));
uint8_t tgt_elt = 0xF & (cache_buf[jj][ii_byte] >> (4 * ii_bit_offset));
cache_buf[ii][jj_byte] &= (0xF0 >> (4 * jj_bit_offset));
cache_buf[jj][ii_byte] &= (0xF0 >> (4 * ii_bit_offset));
cache_buf[ii][jj_byte] |= (tgt_elt << (4 * jj_bit_offset));
cache_buf[jj][ii_byte] |= (src_elt << (4 * ii_bit_offset));
}
}
}
else
{
PADDLE_ENFORCE(false, "Unsupported quantization type.");
}
const size_t row_tile_start_trans = col_tile_start_byte * ELTS_PER_BYTE;
const size_t col_tile_start_byte_trans = row_tile_start / ELTS_PER_BYTE;
int const row_limit_trans = std::min(row_tile_start_trans + M_TILE_L1, num_cols);
int const col_limit_trans = std::min(col_tile_start_byte_trans + N_TILE_L1, col_bytes_trans);
for (int ii = 0; ii < M_TILE_L1; ++ii)
{
int const row = row_tile_start_trans + ii;
for (int jj = 0; jj < N_TILE_L1; jj += VECTOR_WIDTH)
{
int const col = col_tile_start_byte_trans + jj;
const size_t logical_tgt_offset = matrix_offset + row * col_bytes_trans + col;
if (row < row_limit_trans && col < col_limit_trans)
{
for (int v = 0; v < VECTOR_WIDTH; ++v)
{
output_byte_ptr[logical_tgt_offset + v] = cache_buf[ii][jj + v];
}
}
}
}
}
}
}
}
void subbyte_transpose(int8_t* transposed_quantized_tensor, int8_t const* quantized_tensor,
std::vector<size_t> const& shape, QuantType quant_type)
{
if (quant_type == QuantType::W8_A16)
{
subbyte_transpose_impl<QuantType::W8_A16>(transposed_quantized_tensor, quantized_tensor, shape);
}
else if (quant_type == QuantType::W4_A16)
{
subbyte_transpose_impl<QuantType::W4_A16>(transposed_quantized_tensor, quantized_tensor, shape);
}
else if (quant_type == QuantType::W4_AFP8)
{
subbyte_transpose_impl<QuantType::W4_AFP8>(transposed_quantized_tensor, quantized_tensor, shape);
}
else
{
PADDLE_ENFORCE(false, "Invalid quant_type");
}
}
void add_bias_and_interleave_int8s_inplace(int8_t* int8_tensor, const size_t num_elts)
{
for (int ii = 0; ii < num_elts; ++ii)
{
int8_tensor[ii] = int8_t(int(int8_tensor[ii]) + 128);
}
// Step 2 will transform the layout of a 32-bit register in CUDA in order to match the int4 layout. This has no
// performance benefit and is purely so that int4 and int8 have the same layout.
// Pictorially, this does the following:
// bit 32 0
// [elt_3 elt_2 elt_1 elt_0] (each elt occupies 8 bits)
//
// And it will rearrange the output 32 bit register to be the following:
// bit 32 0
// [elt_3 elt_1 elt_2 elt_0] (each elt occupies 8 bits)
PADDLE_ENFORCE(num_elts % 4 == 0, "Dimensions of int8 tensor must be a multiple of 4 for register relayout");
for (size_t base = 0; base < num_elts; base += 4)
{
std::swap(int8_tensor[base + 1], int8_tensor[base + 2]);
}
}
void add_bias_and_interleave_int4s_inplace(int8_t* packed_int4_tensor, const size_t num_elts)
{
int const num_bytes = num_elts / 2;
// Step 1 will be to transform all the int4s to unsigned in order to make the dequantize take as little
// instructions as possible in the CUDA code.
for (size_t ii = 0; ii < num_bytes; ++ii)
{
int8_t transformed_packed_int4s = 0;
int8_t transformed_first_elt
= (int8_t(packed_int4_tensor[ii] << 4) >> 4) + 8; // The double shift here is to ensure sign extension
int8_t transformed_second_elt = (packed_int4_tensor[ii] >> 4) + 8;
PADDLE_ENFORCE(
transformed_first_elt >= 0 && transformed_first_elt <= 15, "Illegal result for int4 transform (first elt)");
PADDLE_ENFORCE(transformed_second_elt >= 0 && transformed_second_elt <= 15,
"Illegal result for int4 transform (second elt)");
// We don't need to mask in these ops since everything should be in the range 0-15
transformed_packed_int4s |= transformed_first_elt;
transformed_packed_int4s |= (transformed_second_elt << 4);
packed_int4_tensor[ii] = transformed_packed_int4s;
}
// Step 2 will transform the layout of a 32-bit register in CUDA in order to minimize the number of shift & logical
// instructions That are needed to extract the int4s in the GEMM main loop. Pictorially, the loop below will do the
// following: Take as input a 32 bit register with layout: bit 32 0
// [elt_7 elt_6 elt_5 elt_4 elt_3 elt_2 elt_1 elt_0] (each elt occupies 4 bits)
//
// And it will rearrange the output 32 bit register to be the following:
// bit 32 0
// [elt_7 elt_5 elt_3 elt_1 elt_6 elt_4 elt_2 elt_0] (each elt occupies 4 bits)
PADDLE_ENFORCE(num_bytes % 4 == 0, "Dimensions of int4 tensor must be a multiple of 8 for register relayout");
const size_t num_registers = num_bytes / 4;
uint32_t* register_ptr = reinterpret_cast<uint32_t*>(packed_int4_tensor);
for (size_t ii = 0; ii < num_registers; ++ii)
{
const uint32_t current_register = register_ptr[ii];
uint32_t transformed_register = 0;
for (int dest_idx = 0; dest_idx < 8; ++dest_idx)
{
int const src_idx = dest_idx < 4 ? 2 * dest_idx : 2 * (dest_idx - 4) + 1;
int const src_shift = 4 * src_idx;
int const dest_shift = 4 * dest_idx;
const uint32_t src_bits = (current_register >> src_shift) & 0xF;
transformed_register |= (src_bits << dest_shift);
}
register_ptr[ii] = transformed_register;
}
}
void add_bias_and_interleave_quantized_tensor_inplace(int8_t* tensor, const size_t num_elts, QuantType quant_type)
{
if (quant_type == QuantType::W8_A16)
{
add_bias_and_interleave_int8s_inplace(tensor, num_elts);
}
else if (quant_type == QuantType::W4_A16 || quant_type == QuantType::W4_AFP8)
{
// W4_AFP8 uses the same preprocessor as W4_A16 because the FP8 data must
// be converted to FP16 before the scales can be applied using CUDA cores.
// As a result, we still want permute the data so that it is well aligned
// for conversion to FP16.
add_bias_and_interleave_int4s_inplace(tensor, num_elts);
}
else
{
PADDLE_ENFORCE(false, "Invalid quantization type for interleaving.");
}
}
void interleave_column_major_tensor(int8_t* interleaved_quantized_tensor, int8_t const* quantized_tensor,
std::vector<size_t> const& shape, QuantType quant_type, LayoutDetails details)
{
PADDLE_ENFORCE(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D");
const size_t num_experts = shape.size() == 2 ? 1 : shape[0];
const size_t num_rows = shape.size() == 2 ? shape[0] : shape[1];
const size_t num_cols = shape.size() == 2 ? shape[1] : shape[2];
int const BITS_PER_ELT = get_weight_quant_bits(quant_type);
int const elts_in_int32 = 32 / BITS_PER_ELT;
int const rows_per_tile = details.rows_per_column_tile;
PADDLE_ENFORCE(!(num_rows % elts_in_int32),
"The number of rows must be a multiple of %d but the number of rows is %ld.", elts_in_int32, num_rows);
uint32_t const* input_byte_ptr = reinterpret_cast<uint32_t const*>(quantized_tensor);
uint32_t* output_byte_ptr = reinterpret_cast<uint32_t*>(interleaved_quantized_tensor);
PADDLE_ENFORCE(!(num_rows % rows_per_tile),
"The number of rows must be a multiple of %d but the number of rows is %ld.", rows_per_tile, num_rows);
int const num_vec_rows = num_rows / elts_in_int32;
int const vec_rows_per_tile = rows_per_tile / elts_in_int32;
int const interleave = details.columns_interleaved;
for (int expert = 0; expert < num_experts; ++expert)
{
const int64_t matrix_offset = expert * int64_t(num_vec_rows) * int64_t(num_cols);
for (int read_col = 0; read_col < num_cols; ++read_col)
{
const int64_t write_col = read_col / interleave;
for (int base_vec_row = 0; base_vec_row < num_vec_rows; base_vec_row += vec_rows_per_tile)
{
for (int vec_read_row = base_vec_row;
vec_read_row < std::min(num_vec_rows, base_vec_row + vec_rows_per_tile); ++vec_read_row)
{
const int64_t vec_write_row = interleave * base_vec_row
+ vec_rows_per_tile * (read_col % interleave) + vec_read_row % vec_rows_per_tile;
const int64_t read_offset = matrix_offset + int64_t(read_col) * num_vec_rows + vec_read_row;
const int64_t write_offset
= matrix_offset + int64_t(write_col) * num_vec_rows * interleave + vec_write_row;
output_byte_ptr[write_offset] = input_byte_ptr[read_offset];
}
}
}
}
}
void preprocess_weights_for_mixed_gemm(int8_t* preprocessed_quantized_weight, int8_t const* row_major_quantized_weight,
std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave)
{
int arch = 89;
if (force_interleave && arch == 90)
{
// Workaround for MOE which doesn't have specialised Hopper kernels yet
arch = 80;
}
LayoutDetails details = getLayoutDetailsForTransform(quant_type, arch);
PADDLE_ENFORCE(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D");
size_t num_elts = 1;
for (auto const& dim : shape)
{
num_elts *= dim;
}
const size_t num_bytes = num_elts * get_weight_quant_bits(quant_type) / 8;
std::vector<int8_t> src_buf(num_bytes);
std::vector<int8_t> dst_buf(num_bytes);
std::copy(row_major_quantized_weight, row_major_quantized_weight + num_bytes, src_buf.begin());
// Works on row major data, so issue this permutation first.
if (details.uses_imma_ldsm)
{
permute_B_rows_for_mixed_gemm(dst_buf.data(), src_buf.data(), shape, quant_type, arch);
src_buf.swap(dst_buf);
}
if (details.layoutB == LayoutDetails::Layout::COLUMN_MAJOR)
{
subbyte_transpose(dst_buf.data(), src_buf.data(), shape, quant_type);
src_buf.swap(dst_buf);
}
if (details.columns_interleaved > 1)
{
interleave_column_major_tensor(dst_buf.data(), src_buf.data(), shape, quant_type, details);
src_buf.swap(dst_buf);
}
if (arch >= 70 && arch < 90)
{
add_bias_and_interleave_quantized_tensor_inplace(src_buf.data(), num_elts, quant_type);
}
std::copy(src_buf.begin(), src_buf.end(), preprocessed_quantized_weight);
}
/*
Arguments:
input_weight_ptr - the weight tensor to be quantized. Must be 2-D or 3-D and of type FP16.
quant_type - the type of the output quantization weight.
This function does symmetric quantization on 2-D or 3-D tensors. It uses the full int range and assumes the
zero-point is zero and will automatically construct the scales.
It always quantizes the last axis of the tensor. For 3-D tensors, it operates in "batched" mode where the tensor is
viewed as a stack of matrices and a scale is produced for each column of every matrix.
Outputs
processed_quantized_weight - quantized AND processed weight for GEMM. This MUST be used with the CUTLASS GEMM
unprocessed_quantized_weight - quantized but unprocessed weights. Useful for reference checking.
scale_ptr - scales for the quantized weight.
Note that the returned quantized_weights will be preprocessed in a way to accelerate the mixed type GEMM. The data
layout may not make sense if printed.
Shapes:
quant_type == int8:
If weight is a [m,n] matrix, quantized_weights will have shape [m,n] and scales of shape [n]
If weight is a [b,m,n] tensor, unprocessed_quantized_weight will have shape [b,m,n] and scales of shape [b,n]
quant_type == int4:
If weight is a [m,n] matrix, quantized_weights will have shape [m, ceil(n/2)] and scales of shape [n]
If weight is a [b,m,n] tensor, unprocessed_quantized_weight will have shape [b,m, ceil(n/2)] and scales of shape
[b,n]
The quantized_weight will be of type torch.int8 and have two int4 values packed in a single byte. This is the
reason for halving the shape. At the time of writing this code, there was not an elegant way to handle this kind
of batched quantization using torch's quantized tensors (to the best of the author's knowledge). Scale tensors
must have a dimension of 1, which breaks the semantics we need for batched weights.
*/
template <typename ComputeType, typename WeightType>
void symmetric_quantize(int8_t* processed_quantized_weight, int8_t* unprocessed_quantized_weight,
ComputeType* scale_ptr, WeightType const* input_weight_ptr, std::vector<size_t> const& shape, QuantType quant_type,
bool force_interleave)
{
PADDLE_ENFORCE(processed_quantized_weight, "Processed quantized tensor is NULL");
PADDLE_ENFORCE(scale_ptr, "Scale output pointer is NULL");
PADDLE_ENFORCE(input_weight_ptr, "Input weight pointer is NULL");
PADDLE_ENFORCE(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D");
const size_t num_experts = shape.size() == 2 ? 1 : shape[0];
const size_t num_rows = shape.size() == 2 ? shape[0] : shape[1];
const size_t num_cols = shape.size() == 2 ? shape[1] : shape[2];
int const bits_in_type = get_weight_quant_bits(quant_type);
int const bytes_per_out_col = num_cols * bits_in_type / 8;
int const bits_per_weigtht_element = get_weight_quant_bits(quant_type);
std::vector<int8_t> weight_buf;
if (unprocessed_quantized_weight == nullptr)
{
weight_buf.resize(num_experts * num_rows * num_cols);
unprocessed_quantized_weight = weight_buf.data();
}
int const input_mat_size = num_rows * num_cols;
int const quantized_mat_size = num_rows * bytes_per_out_col;
float const quant_range_scale = 1.f / float(1 << (bits_in_type - 1));
std::vector<float> per_col_max(num_cols);
for (int expert = 0; expert < num_experts; ++expert)
{
WeightType const* current_weight = input_weight_ptr + expert * input_mat_size;
int8_t* current_quantized_weight = unprocessed_quantized_weight + expert * quantized_mat_size;
// First we find the per column max for this expert weight.
for (int jj = 0; jj < num_cols; ++jj)
{
per_col_max[jj] = 0.f;
}
for (int ii = 0; ii < num_rows; ++ii)
{
WeightType const* current_weight_row = current_weight + ii * num_cols;
for (int jj = 0; jj < num_cols; ++jj)
{
per_col_max[jj] = std::max(per_col_max[jj], std::abs(float(current_weight_row[jj])));
}
}
// Then, we construct the scales
ComputeType* current_scales = scale_ptr + expert * num_cols;
for (int jj = 0; jj < num_cols; ++jj)
{
per_col_max[jj] *= quant_range_scale;
current_scales[jj] = ComputeType(per_col_max[jj]);
}
// Finally, construct the weights.
for (int ii = 0; ii < num_rows; ++ii)
{
int8_t* current_quantized_weight_row = current_quantized_weight + ii * bytes_per_out_col;
WeightType const* current_weight_row = current_weight + ii * num_cols;
for (int jj = 0; jj < bytes_per_out_col; ++jj)
{
if (bits_per_weigtht_element == 8)
{
float const col_scale = per_col_max[jj];
float const weight_elt = float(current_weight_row[jj]);
float const scaled_weight = (col_scale != 0.0f) ? round(weight_elt / col_scale) : 0.0f;
const int8_t clipped_weight = int8_t(std::max(-128.f, std::min(127.f, scaled_weight)));
current_quantized_weight_row[jj] = clipped_weight;
}
else if (bits_per_weigtht_element == 4)
{
// We will pack two int4 elements per iteration of the inner loop.
int8_t packed_int4s = 0;
for (int packed_idx = 0; packed_idx < 2; ++packed_idx)
{
int const input_idx = 2 * jj + packed_idx;
if (input_idx < num_cols)
{
float const col_scale = per_col_max[input_idx];
float const weight_elt = float(current_weight_row[input_idx]);
float const scaled_weight = (col_scale != 0.0f) ? round(weight_elt / col_scale) : 0.0f;
int int_weight = int(scaled_weight);
const int8_t clipped_weight = std::max(-8, std::min(7, int_weight));
// Kill the sign extension bits (hence 0x0F mask) then shift to upper bits
// if packing the second int4 and or the bits into the final result.
packed_int4s |= ((clipped_weight & 0x0F) << (4 * packed_idx));
}
}
current_quantized_weight_row[jj] = packed_int4s;
}
else
{
PADDLE_ENFORCE(false, "Unsupported quantization type");
}
}
}
}
preprocess_weights_for_mixed_gemm(
processed_quantized_weight, unprocessed_quantized_weight, shape, quant_type, force_interleave);
}
template void symmetric_quantize<half, float>(
int8_t*, int8_t*, half*, float const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<half, half>(
int8_t*, int8_t*, half*, half const*, std::vector<size_t> const&, QuantType, bool);
#ifdef ENABLE_BF16
template void symmetric_quantize<__nv_bfloat16, __nv_bfloat16>(
int8_t*, int8_t*, __nv_bfloat16*, __nv_bfloat16 const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<__nv_bfloat16, float>(
int8_t*, int8_t*, __nv_bfloat16*, float const*, std::vector<size_t> const&, QuantType, bool);
#endif
template <typename ComputeType, typename WeightType>
void symmetric_quantize(int8_t* processed_quantized_weight, ComputeType* scale_ptr, WeightType const* input_weight_ptr,
std::vector<size_t> const& shape, QuantType quant_type, bool force_interleave)
{
symmetric_quantize(
processed_quantized_weight, nullptr, scale_ptr, input_weight_ptr, shape, quant_type, force_interleave);
}
template void symmetric_quantize<float, float>(
int8_t*, float*, float const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<half, float>(
int8_t*, half*, float const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<half, half>(int8_t*, half*, half const*, std::vector<size_t> const&, QuantType, bool);
#ifdef ENABLE_BF16
template void symmetric_quantize<__nv_bfloat16, __nv_bfloat16>(
int8_t*, __nv_bfloat16*, __nv_bfloat16 const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<__nv_bfloat16, half>(
int8_t*, __nv_bfloat16*, half const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<half, __nv_bfloat16>(
int8_t*, half*, __nv_bfloat16 const*, std::vector<size_t> const&, QuantType, bool);
template void symmetric_quantize<__nv_bfloat16, float>(
int8_t*, __nv_bfloat16*, float const*, std::vector<size_t> const&, QuantType, bool);
#endif
} // namespace cutlass_kernels
} // namespace kernels