Files
FastDeploy/fastdeploy/backends/lite/lite_backend.cc
DefTruth c4288a92e1 [lite] add more options for lite backend (#313)
* [cmake] support Android arm64-v8a & armeabi-v7a native c++ sdk

* [cmake] fixed patchelf download on mac and android

* [lite] Add threads and power_mode option support

* [pybind] update runtime pybind for lite power mode

* [python] Add set_lite_power_mode api to runtime

* [Lite] add lite enable_fp16 option support

* [lite] add more options for lite backend.

* [cmake] fixed Paddle Lite typo

* [runtime] format LitePowerMode enum comments

* [runtime] format lite option comments
2022-10-04 17:31:48 +08:00

175 lines
6.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/backends/lite/lite_backend.h"
#include <cstring>
namespace fastdeploy {
// Convert data type from paddle lite to fastdeploy
FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype) {
if (dtype == paddle::lite_api::PrecisionType::kFloat) {
return FDDataType::FP32;
} else if (dtype == paddle::lite_api::PrecisionType::kInt8) {
return FDDataType::INT8;
} else if (dtype == paddle::lite_api::PrecisionType::kInt32) {
return FDDataType::INT32;
} else if (dtype == paddle::lite_api::PrecisionType::kInt64) {
return FDDataType::INT64;
} else if (dtype == paddle::lite_api::PrecisionType::kInt16) {
return FDDataType::INT16;
} else if (dtype == paddle::lite_api::PrecisionType::kUInt8) {
return FDDataType::UINT8;
} else if (dtype == paddle::lite_api::PrecisionType::kFP64) {
return FDDataType::FP64;
}
FDASSERT(false, "Unexpected data type of %d.", dtype);
return FDDataType::FP32;
}
void LiteBackend::BuildOption(const LiteBackendOption& option) {
option_ = option;
std::vector<paddle::lite_api::Place> valid_places;
if (option.enable_fp16) {
paddle::lite_api::MobileConfig check_fp16_config;
// Determine whether the device supports the FP16
// instruction set (or whether it is an arm device
// of the armv8.2 architecture)
supported_fp16_ = check_fp16_config.check_fp16_valid();
if (supported_fp16_) {
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFP16)});
} else {
FDWARNING << "This device is not supported fp16, will skip fp16 option.";
}
}
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFloat)});
config_.set_valid_places(valid_places);
if (option.threads > 0) {
config_.set_threads(option.threads);
}
if (option.power_mode > 0) {
config_.set_power_mode(
static_cast<paddle::lite_api::PowerMode>(option.power_mode));
}
}
bool LiteBackend::InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const LiteBackendOption& option) {
if (initialized_) {
FDERROR << "LiteBackend is already initialized, cannot initialize again."
<< std::endl;
return false;
}
config_.set_model_file(model_file);
config_.set_param_file(params_file);
BuildOption(option);
predictor_ =
paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::CxxConfig>(
config_);
if (option_.optimized_model_dir != "") {
FDINFO << "Optimzed model dir is not empty, will save optimized model to: "
<< option_.optimized_model_dir << std::endl;
predictor_->SaveOptimizedModel(option_.optimized_model_dir);
}
inputs_desc_.clear();
outputs_desc_.clear();
inputs_order_.clear();
std::vector<std::string> input_names = predictor_->GetInputNames();
std::vector<std::string> output_names = predictor_->GetOutputNames();
for (size_t i = 0; i < input_names.size(); ++i) {
inputs_order_[input_names[i]] = i;
TensorInfo info;
auto tensor = predictor_->GetInput(i);
auto shape = tensor->shape();
info.shape.assign(shape.begin(), shape.end());
info.name = input_names[i];
info.dtype = LiteDataTypeToFD(tensor->precision());
inputs_desc_.emplace_back(info);
}
for (size_t i = 0; i < output_names.size(); ++i) {
TensorInfo info;
auto tensor = predictor_->GetOutput(i);
auto shape = tensor->shape();
info.shape.assign(shape.begin(), shape.end());
info.name = output_names[i];
info.dtype = LiteDataTypeToFD(tensor->precision());
outputs_desc_.emplace_back(info);
}
initialized_ = true;
return true;
}
TensorInfo LiteBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of inputs: %d.", index,
NumInputs());
return inputs_desc_[index];
}
std::vector<TensorInfo> LiteBackend::GetInputInfos() { return inputs_desc_; }
TensorInfo LiteBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs %d.", index,
NumOutputs());
return outputs_desc_[index];
}
std::vector<TensorInfo> LiteBackend::GetOutputInfos() { return outputs_desc_; }
bool LiteBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs) {
if (inputs.size() != inputs_desc_.size()) {
FDERROR << "[LiteBackend] Size of inputs(" << inputs.size()
<< ") should keep same with the inputs of this model("
<< inputs_desc_.size() << ")." << std::endl;
return false;
}
for (size_t i = 0; i < inputs.size(); ++i) {
auto iter = inputs_order_.find(inputs[i].name);
if (iter == inputs_order_.end()) {
FDERROR << "Cannot find input with name:" << inputs[i].name
<< " in loaded model." << std::endl;
return false;
}
auto tensor = predictor_->GetInput(iter->second);
tensor->Resize(inputs[i].shape);
tensor->ShareExternalMemory(const_cast<void*>(inputs[i].CpuData()),
inputs[i].Nbytes(),
paddle::lite_api::TargetType::kARM);
}
predictor_->Run();
outputs->resize(outputs_desc_.size());
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
auto tensor = predictor_->GetOutput(i);
(*outputs)[i].Resize(tensor->shape(), outputs_desc_[i].dtype,
outputs_desc_[i].name);
memcpy((*outputs)[i].MutableData(), tensor->data<void>(),
(*outputs)[i].Nbytes());
}
return true;
}
} // namespace fastdeploy