mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			122 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from abc import ABC, abstractmethod
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
 | |
| from fastdeploy.model_executor.load_weight_utils import load_composite_checkpoint
 | |
| from fastdeploy.model_executor.models.deepseek_v3 import DeepSeekV3PretrainedModel
 | |
| from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_PretrainedModel
 | |
| from fastdeploy.model_executor.models.ernie4_5_mtp import Ernie4_5_MTPPretrainedModel
 | |
| from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import (
 | |
|     Ernie4_5_VLPretrainedModel,
 | |
| )
 | |
| from fastdeploy.model_executor.models.model_base import ModelRegistry
 | |
| from fastdeploy.model_executor.models.qwen2 import Qwen2PretrainedModel
 | |
| from fastdeploy.model_executor.models.qwen3 import Qwen3PretrainedModel
 | |
| from fastdeploy.model_executor.models.qwen3moe import Qwen3MoePretrainedModel
 | |
| from fastdeploy.platforms import current_platform
 | |
| 
 | |
| MODEL_CLASSES = {
 | |
|     "Ernie4_5_MoeForCausalLM": Ernie4_5_PretrainedModel,
 | |
|     "Ernie4_5_MTPForCausalLM": Ernie4_5_MTPPretrainedModel,
 | |
|     "Qwen2ForCausalLM": Qwen2PretrainedModel,
 | |
|     "Qwen3ForCausalLM": Qwen3PretrainedModel,
 | |
|     "Qwen3MoeForCausalLM": Qwen3MoePretrainedModel,
 | |
|     "Ernie4_5_ForCausalLM": Ernie4_5_PretrainedModel,
 | |
|     "DeepseekV3ForCausalLM": DeepSeekV3PretrainedModel,
 | |
|     "Ernie4_5_VLMoeForConditionalGeneration": Ernie4_5_VLPretrainedModel,
 | |
| }
 | |
| 
 | |
| 
 | |
| def get_model_from_loader(fd_config: FDConfig) -> nn.Layer:
 | |
|     """load or download model"""
 | |
|     model_loader = DefaultModelLoader(fd_config.load_config)
 | |
|     model = model_loader.load_model(fd_config)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| class BaseModelLoader(ABC):
 | |
|     """Base class for model loaders."""
 | |
| 
 | |
|     def __init__(self, load_config: LoadConfig):
 | |
|         self.load_config = load_config
 | |
| 
 | |
|     @abstractmethod
 | |
|     def download_model(self, load_config: ModelConfig) -> None:
 | |
|         """Download a model so that it can be immediately loaded."""
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     @abstractmethod
 | |
|     def load_model(self, fd_config: FDConfig) -> nn.Layer:
 | |
|         """Load a model with the given configurations."""
 | |
|         raise NotImplementedError
 | |
| 
 | |
| 
 | |
| class DefaultModelLoader(BaseModelLoader):
 | |
|     """ModelLoader that can load registered models"""
 | |
| 
 | |
|     def __init__(self, load_config: LoadConfig):
 | |
|         super().__init__(load_config)
 | |
| 
 | |
|     def download_model(self, model_config: ModelConfig) -> None:
 | |
|         pass
 | |
| 
 | |
|     def clean_memory_fragments(self, state_dict: dict) -> None:
 | |
|         """clean_memory_fragments"""
 | |
|         if current_platform.is_cuda():
 | |
|             if state_dict:
 | |
|                 for k, v in state_dict.items():
 | |
|                     if isinstance(v, paddle.Tensor):
 | |
|                         v.value().get_tensor()._clear()
 | |
|             paddle.device.cuda.empty_cache()
 | |
|             paddle.device.synchronize()
 | |
| 
 | |
|     def load_model(self, fd_config: FDConfig) -> nn.Layer:
 | |
|         context = paddle.LazyGuard()
 | |
|         architectures = fd_config.model_config.architectures[0]
 | |
| 
 | |
|         if fd_config.load_config.dynamic_load_weight:
 | |
|             # register rl model
 | |
|             import fastdeploy.rl  # noqa
 | |
| 
 | |
|             architectures = architectures + "RL"
 | |
| 
 | |
|         with context:
 | |
|             model_cls = ModelRegistry.get_class(architectures)
 | |
|             model = model_cls(fd_config)
 | |
| 
 | |
|         model.eval()
 | |
| 
 | |
|         # RL model not need set_state_dict
 | |
|         if fd_config.load_config.dynamic_load_weight:
 | |
|             return model
 | |
| 
 | |
|         # TODO(gongshaotian): Now, only support safetensor
 | |
|         model_class = MODEL_CLASSES[architectures]
 | |
|         state_dict = load_composite_checkpoint(
 | |
|             fd_config.parallel_config.model_name_or_path,
 | |
|             model_class,
 | |
|             fd_config,
 | |
|             return_numpy=True,
 | |
|         )
 | |
|         model.set_state_dict(state_dict)
 | |
|         self.clean_memory_fragments(state_dict)
 | |
|         return model
 | 
