mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			161 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/runtime/backends/tensorrt/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| int ShapeRangeInfo::Update(const std::vector<int64_t>& new_shape) {
 | |
|   if (new_shape.size() != shape.size()) {
 | |
|     return -1;
 | |
|   }
 | |
|   int need_update_engine = 0;
 | |
|   for (size_t i = 0; i < shape.size(); ++i) {
 | |
|     if (is_static[i] == 1 && new_shape[i] != shape[i]) {
 | |
|       return -1;
 | |
|     }
 | |
|     if (new_shape[i] < min[i] || min[i] < 0) {
 | |
|       need_update_engine = 1;
 | |
|     }
 | |
|     if (new_shape[i] > max[i] || max[i] < 0) {
 | |
|       need_update_engine = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (need_update_engine == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   FDWARNING << "[New Shape Out of Range] input name: " << name
 | |
|             << ", shape: " << new_shape
 | |
|             << ", The shape range before: min_shape=" << min
 | |
|             << ", max_shape=" << max << "." << std::endl;
 | |
|   for (size_t i = 0; i < shape.size(); ++i) {
 | |
|     if (new_shape[i] < min[i] || min[i] < 0) {
 | |
|       min[i] = new_shape[i];
 | |
|     }
 | |
|     if (new_shape[i] > max[i] || max[i] < 0) {
 | |
|       max[i] = new_shape[i];
 | |
|     }
 | |
|   }
 | |
|   FDWARNING
 | |
|       << "[New Shape Out of Range] The updated shape range now: min_shape="
 | |
|       << min << ", max_shape=" << max << "." << std::endl;
 | |
|   return need_update_engine;
 | |
| }
 | |
| 
 | |
| size_t TrtDataTypeSize(const nvinfer1::DataType& dtype) {
 | |
|   if (dtype == nvinfer1::DataType::kFLOAT) {
 | |
|     return sizeof(float);
 | |
|   } else if (dtype == nvinfer1::DataType::kHALF) {
 | |
|     return sizeof(float) / 2;
 | |
|   } else if (dtype == nvinfer1::DataType::kINT8) {
 | |
|     return sizeof(int8_t);
 | |
|   } else if (dtype == nvinfer1::DataType::kINT32) {
 | |
|     return sizeof(int32_t);
 | |
|   }
 | |
|   // kBOOL
 | |
|   return sizeof(bool);
 | |
| }
 | |
| 
 | |
| FDDataType GetFDDataType(const nvinfer1::DataType& dtype) {
 | |
|   if (dtype == nvinfer1::DataType::kFLOAT) {
 | |
|     return FDDataType::FP32;
 | |
|   } else if (dtype == nvinfer1::DataType::kHALF) {
 | |
|     return FDDataType::FP16;
 | |
|   } else if (dtype == nvinfer1::DataType::kINT8) {
 | |
|     return FDDataType::INT8;
 | |
|   } else if (dtype == nvinfer1::DataType::kINT32) {
 | |
|     return FDDataType::INT32;
 | |
|   }
 | |
|   // kBOOL
 | |
|   return FDDataType::BOOL;
 | |
| }
 | |
| 
 | |
| nvinfer1::DataType ReaderDtypeToTrtDtype(int reader_dtype) {
 | |
|   if (reader_dtype == 0) {
 | |
|     return nvinfer1::DataType::kFLOAT;
 | |
|   } else if (reader_dtype == 1) {
 | |
|     FDASSERT(false, "TensorRT cannot support data type of double now.");
 | |
|   } else if (reader_dtype == 2) {
 | |
|     FDASSERT(false, "TensorRT cannot support data type of uint8 now.");
 | |
|   } else if (reader_dtype == 3) {
 | |
|     return nvinfer1::DataType::kINT8;
 | |
|   } else if (reader_dtype == 4) {
 | |
|     return nvinfer1::DataType::kINT32;
 | |
|   } else if (reader_dtype == 5) {
 | |
|     // regard int64 as int32
 | |
|     return nvinfer1::DataType::kINT32;
 | |
|   } else if (reader_dtype == 6) {
 | |
|     return nvinfer1::DataType::kHALF;
 | |
|   }
 | |
|   FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
 | |
|   return nvinfer1::DataType::kFLOAT;
 | |
| }
 | |
| 
 | |
| FDDataType ReaderDtypeToFDDtype(int reader_dtype) {
 | |
|   if (reader_dtype == 0) {
 | |
|     return FDDataType::FP32;
 | |
|   } else if (reader_dtype == 1) {
 | |
|     return FDDataType::FP64;
 | |
|   } else if (reader_dtype == 2) {
 | |
|     return FDDataType::UINT8;
 | |
|   } else if (reader_dtype == 3) {
 | |
|     return FDDataType::INT8;
 | |
|   } else if (reader_dtype == 4) {
 | |
|     return FDDataType::INT32;
 | |
|   } else if (reader_dtype == 5) {
 | |
|     return FDDataType::INT64;
 | |
|   } else if (reader_dtype == 6) {
 | |
|     return FDDataType::FP16;
 | |
|   }
 | |
|   FDASSERT(false, "Received unexpected data type of %d", reader_dtype);
 | |
|   return FDDataType::FP32;
 | |
| }
 | |
| 
 | |
| std::vector<int> ToVec(const nvinfer1::Dims& dim) {
 | |
|   std::vector<int> out(dim.d, dim.d + dim.nbDims);
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| int64_t Volume(const nvinfer1::Dims& d) {
 | |
|   return std::accumulate(d.d, d.d + d.nbDims, 1, std::multiplies<int64_t>());
 | |
| }
 | |
| 
 | |
| nvinfer1::Dims ToDims(const std::vector<int>& vec) {
 | |
|   int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
 | |
|   if (static_cast<int>(vec.size()) > limit) {
 | |
|     FDWARNING << "Vector too long, only first 8 elements are used in dimension."
 | |
|               << std::endl;
 | |
|   }
 | |
|   // Pick first nvinfer1::Dims::MAX_DIMS elements
 | |
|   nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
 | |
|   std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
 | |
|   return dims;
 | |
| }
 | |
| 
 | |
| nvinfer1::Dims ToDims(const std::vector<int64_t>& vec) {
 | |
|   int limit = static_cast<int>(nvinfer1::Dims::MAX_DIMS);
 | |
|   if (static_cast<int>(vec.size()) > limit) {
 | |
|     FDWARNING << "Vector too long, only first 8 elements are used in dimension."
 | |
|               << std::endl;
 | |
|   }
 | |
|   // Pick first nvinfer1::Dims::MAX_DIMS elements
 | |
|   nvinfer1::Dims dims{std::min(static_cast<int>(vec.size()), limit), {}};
 | |
|   std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d));
 | |
|   return dims;
 | |
| }
 | |
| 
 | |
| }  // namespace fastdeploy
 | 
