Files
FastDeploy/fastdeploy/inter_communicator/engine_cache_queue.py
kevin 67298cf4c0
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
add error traceback info (#3419)
* add error traceback info

* update error msg

* update code

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-19 19:32:04 +08:00

281 lines
12 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import threading
import time
import traceback
from multiprocessing.managers import (
AcquirerProxy,
BaseManager,
ListProxy,
Value,
ValueProxy,
)
from typing import Any, List, Tuple
from fastdeploy.utils import get_logger
logger = get_logger("cache_queue_manager", "cache_queue_manager.log")
class EngineCacheQueue:
"""
Multiprocessing manager for cache queue between Engine and Worker.
Manages shared resources using multiprocessing managers for inter-process communication.
"""
def __init__(
self,
address: Tuple[str, int] = ("127.0.0.1", 56666),
authkey: bytes = b"cache_queue_service",
is_server: bool = False,
num_client: int = 1, # tensor parallel size
client_id: int = -1, # tensor parallel id
local_data_parallel_size: int = 1, # data parallel size
local_data_parallel_id: int = 0, # local data parallel id
) -> None:
"""
Initialize the cache communication queue.
Args:
address: Network address (IP, port) for the queue server
authkey: Authentication key for secure connection
is_server: Whether this instance acts as a server
num_client: Total number of expected clients
client_id: Unique identifier for client instances
local_data_parallel_size: data parallel size
local_data_parallel_id: local data parallel id
"""
self.address: Tuple[str, int] = address
self.authkey: bytes = authkey
self.num_client: int = num_client
self.client_id: int = client_id
self.local_data_parallel_size = local_data_parallel_size
self.local_data_parallel_id = local_data_parallel_id
class QueueManager(BaseManager):
"""
Custom QueueManager for proxy object registration
"""
pass
if is_server:
# Server-side initialization for shared resources
self.transfer_task_queue_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
self.tansfer_done_queue_init: List[List[Any]] = [list() for _ in range(self.local_data_parallel_size)]
self.cache_sync_value_init: List[Value] = [Value("i", 0) for _ in range(self.local_data_parallel_size)]
self.transfer_task_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
]
self.transfer_task_done_lock_init: List[threading.Lock] = [
threading.Lock() for _ in range(self.local_data_parallel_size)
]
# Initialize barriers
self.barrier1_init = [threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)]
self.barrier2_init = [threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)]
self.barrier3_init = [threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)]
self.swap_to_cpu_barrier1_init = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.swap_to_cpu_barrier2_init = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.swap_to_gpu_barrier1_init = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
self.swap_to_gpu_barrier2_init = [
threading.Barrier(self.num_client) for _ in range(self.local_data_parallel_size)
]
# Register shared objects with proxy types
QueueManager.register(
"get_transfer_task_queue",
callable=lambda idx: self.transfer_task_queue_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_tansfer_done_queue",
callable=lambda idx: self.tansfer_done_queue_init[idx],
proxytype=ListProxy,
)
QueueManager.register(
"get_cache_sync_value",
callable=lambda idx: self.cache_sync_value_init[idx],
proxytype=ValueProxy,
)
QueueManager.register(
"get_transfer_task_lock",
callable=lambda idx: self.transfer_task_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register(
"get_transfer_task_done_lock",
callable=lambda idx: self.transfer_task_done_lock_init[idx],
proxytype=AcquirerProxy,
)
QueueManager.register("get_barrier1", callable=lambda idx: self.barrier1_init[idx])
QueueManager.register("get_barrier2", callable=lambda idx: self.barrier2_init[idx])
QueueManager.register("get_barrier3", callable=lambda idx: self.barrier3_init[idx])
QueueManager.register(
"get_swap_to_cpu_barrier1",
callable=lambda idx: self.swap_to_cpu_barrier1_init[idx],
)
QueueManager.register(
"get_swap_to_cpu_barrier2",
callable=lambda idx: self.swap_to_cpu_barrier2_init[idx],
)
QueueManager.register(
"get_swap_to_gpu_barrier1",
callable=lambda idx: self.swap_to_gpu_barrier1_init[idx],
)
QueueManager.register(
"get_swap_to_gpu_barrier2",
callable=lambda idx: self.swap_to_gpu_barrier2_init[idx],
)
self.manager: BaseManager = QueueManager(address=self.address, authkey=self.authkey)
self.manager.start()
logger.info(f"EngineCacheQueue server started at {self.address}")
else:
# Client-side connection setup
assert (
0 <= self.client_id < self.num_client
), f"client_id must be between 0 and {self.num_client-1}, got {self.client_id}"
QueueManager.register("get_transfer_task_queue")
QueueManager.register("get_tansfer_done_queue")
QueueManager.register("get_cache_sync_value")
QueueManager.register("get_transfer_task_lock")
QueueManager.register("get_transfer_task_done_lock")
QueueManager.register("get_barrier1")
QueueManager.register("get_barrier2")
QueueManager.register("get_barrier3")
QueueManager.register("get_swap_to_cpu_barrier1")
QueueManager.register("get_swap_to_cpu_barrier2")
QueueManager.register("get_swap_to_gpu_barrier1")
QueueManager.register("get_swap_to_gpu_barrier2")
self.manager = QueueManager(address=self.address, authkey=self.authkey)
self._connect_with_retry()
# Get proxy objects for shared resources
self.transfer_task_queue = self.manager.get_transfer_task_queue(self.local_data_parallel_id)
self.tansfer_done_queue = self.manager.get_tansfer_done_queue(self.local_data_parallel_id)
self.task_sync_value = self.manager.get_cache_sync_value(self.local_data_parallel_id)
self.task_lock = self.manager.get_transfer_task_lock(self.local_data_parallel_id)
self.task_done_lock = self.manager.get_transfer_task_done_lock(self.local_data_parallel_id)
# Get barrier proxies
self.barrier1 = self.manager.get_barrier1(self.local_data_parallel_id)
self.barrier2 = self.manager.get_barrier2(self.local_data_parallel_id)
self.barrier3 = self.manager.get_barrier3(self.local_data_parallel_id)
self.swap_to_cpu_barrier1 = self.manager.get_swap_to_cpu_barrier1(self.local_data_parallel_id)
self.swap_to_cpu_barrier2 = self.manager.get_swap_to_cpu_barrier2(self.local_data_parallel_id)
self.swap_to_gpu_barrier1 = self.manager.get_swap_to_gpu_barrier1(self.local_data_parallel_id)
self.swap_to_gpu_barrier2 = self.manager.get_swap_to_gpu_barrier2(self.local_data_parallel_id)
self.total_num: int = (1 << self.num_client) - 1
if not is_server:
# Setup position and total_num for sync operations
self.position: int = 1 << self.client_id
logger.info(f"Connected EngineCacheQueue client_id: {self.client_id}")
def _connect_with_retry(self, max_retries: int = 5, interval: int = 3) -> None:
"""
Connect to the server with retry mechanism.
Args:
max_retries: Maximum connection attempts
interval: Retry interval in seconds
Raises:
ConnectionError: If all connection attempts fail
"""
for _ in range(max_retries):
try:
self.manager.connect()
return
except ConnectionRefusedError:
time.sleep(interval)
raise ConnectionError(f"EngineCacheQueue cannot connect to {self.address}")
def put_transfer_task(self, item):
"""
put swap task
"""
self.task_lock.acquire()
if 0 < self.task_sync_value.get() < self.total_num:
self.task_lock.release()
while 0 < self.task_sync_value.get() < self.total_num:
time.sleep(0.001)
self.task_lock.acquire()
self.task_sync_value.set(0)
self.transfer_task_queue.append(item)
logger.info(f"put_transfer_task: put swap task {item[-1]} to queue successful")
self.task_lock.release()
def get_transfer_task(self):
"""
get swap task
"""
data = None
read_finish = False
self.task_lock.acquire()
if self.task_sync_value.get() & self.position == 0 and len(self.transfer_task_queue) > 0:
data = self.transfer_task_queue[0]
logger.debug(f"get_transfer_task: Get {data} by {self.client_id} from queue successful")
set_value = self.task_sync_value.get() | self.position
logger.info(f"get_transfer_task: rank: {self.client_id} set_value: {set_value}")
if set_value >= self.total_num:
self.transfer_task_queue.pop(0)
set_value = 0
read_finish = True
self.task_sync_value.set(set_value)
self.task_lock.release()
return data, read_finish
def put_transfer_done_signal(self, item):
"""
put swap result
"""
self.task_done_lock.acquire()
self.tansfer_done_queue.append(item)
self.task_done_lock.release()
logger.info(f"put_transfer_done_signal: put swap task {item[-1]} finished signal to queue successful")
def get_transfer_done_signal(self):
"""
get swap result
"""
data = None
self.task_done_lock.acquire()
if len(self.tansfer_done_queue) > 0:
data = self.tansfer_done_queue.pop(0)
logger.info(f"get_transfer_done_signal: Get swap task {data[-1]} finished signal from queue successful")
self.task_done_lock.release()
return data
def empty(self):
"""
check if queue is empty
"""
try:
return len(self.transfer_task_queue) == 0
except Exception as e:
logger.error(f"empty function meets error: {e}, {str(traceback.format_exc())}")
raise e