Files
FastDeploy/fastdeploy/cache_manager/cache_messager.py
gaoziyuan 82e64b13e1 [NewFeature]Support dp multi api server && Fix some bug in mixed ep && merge develop (#3598)
* [Feature] update ep

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix queue ports idx

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* fix ci

* Update engine.py

* fix ci

* fix some bug in mixed ep

* add server fix and op fix

* rm some log

* fix code style

* ltd fix

* fix

* fix

* fix some bug

* fix bug

* fix bug

* fix style

* Update config.py

* Update splitwise_connector.py

* Update cache_messager.py

* Update __init__.py

* merge and fix

* Update engine.py

* Update common_engine.py

* Update run_ci_xpu.sh

* Update ernie_processor.py

* Update ernie_processor.py

---------

Co-authored-by: ltd0924 <ltd0924@sina.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
2025-08-26 19:59:02 +08:00

306 lines
13 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import math
import threading
import time
import traceback
import numpy as np
import paddle
from fastdeploy.cache_manager.transfer_factory import IPCCommManager, RDMACommManager
from fastdeploy.inter_communicator import (
EngineWorkerQueue,
IPCSignal,
shared_memory_exists,
)
from fastdeploy.utils import get_logger
logger = get_logger("cache_messager", "cache_messager.log")
class CacheMessager:
"""
CacheMessager is used to send the cache data between the engine worker and the cache server.
"""
def __init__(
self,
splitwise_role,
transfer_protocol,
pod_ip,
engine_worker_queue_port,
local_data_parallel_id,
gpu_cache_kvs,
rank,
nranks,
num_layers,
gpu_id=0,
rdma_port=None,
):
"""
Initialize the CacheMessager object.
Args:
splitwise_role (str): splitwise_role only can be 'prefill' or 'decode'.
transfer_protocol (str): support ipc and rdma
engine_worker_queue_port (int): engine_worker_queue port
gpu_cache_kvs (dict): GPU kv cache
rank (int): current rank
nranks (int): global rank number
num_layers (int): model layer number
gpu_id (int, optional): GPU ID
rdma_port (int, optional): RDMA port
Returns:
None
"""
assert splitwise_role in [
"prefill",
"decode",
], "splitwise_role must be prefill or decode"
self.splitwise_role = splitwise_role
self.gpu_cache_kvs = gpu_cache_kvs
self.rank = rank
self.nranks = nranks
address = (pod_ip, engine_worker_queue_port)
self.engine_worker_queue = EngineWorkerQueue(
address=address,
is_server=False,
num_client=self.nranks,
client_id=self.rank,
local_data_parallel_id=local_data_parallel_id,
)
transfer_protocol = transfer_protocol.split(",")
logger.info(f"splitwise role: {splitwise_role}, {transfer_protocol}" f"rank: {rank}")
# 1. initialize the cache_k_ptr_list and cache_v_ptr_list
self.num_layers = num_layers
cache_k_ptr_list = []
cache_v_ptr_list = []
cache_k = []
cache_v = []
self.messager = {}
for layer_idx in range(self.num_layers):
key_cache = self.gpu_cache_kvs[f"key_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
val_cache = self.gpu_cache_kvs[f"value_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
cache_k.append(key_cache)
cache_v.append(val_cache)
cache_k_ptr_list.append(key_cache.data_ptr())
cache_v_ptr_list.append(val_cache.data_ptr())
cache_k_ptr_list = np.array(cache_k_ptr_list)
cache_v_ptr_list = np.array(cache_v_ptr_list)
# 2. initialize the block_bytes
cache_shape = key_cache.shape
max_block_num = cache_shape[0]
block_bytes = math.prod(cache_shape[1:])
if key_cache.dtype == paddle.bfloat16:
block_bytes *= 2
logger.info(
f"layers {num_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"block_bytes: {block_bytes}, dtype: {key_cache.dtype}"
)
self.block_bytes = block_bytes
# 3. initialize the messager
for protocol in transfer_protocol:
if protocol == "ipc":
self.messager[protocol] = IPCCommManager(
self.rank,
gpu_id,
cache_k,
cache_v,
)
local_device_id = int(str(cache_k[0].place)[-2])
logger.info(f"done create ipc_comm with local_device_id:{local_device_id}, ")
elif protocol == "rdma":
logger.info(f"splitwise_role rdma: {self.splitwise_role}, rank: {self.rank}, gpu_id: {gpu_id}")
self.messager[protocol] = RDMACommManager(
splitwise_role,
rank,
gpu_id,
cache_k_ptr_list,
cache_v_ptr_list,
max_block_num,
block_bytes,
rdma_port,
)
self.gpu_id = gpu_id
self.cache_info = dict()
self.dp_rank_id = self.rank + local_data_parallel_id * self.nranks
layerwise_send_cache_thread = threading.Thread(target=self._prefill_layerwise_send_cache_thread)
layerwise_send_cache_thread.daemon = True
layerwise_send_cache_thread.start()
logger.info(f"cache messager init finished, use {transfer_protocol}")
def _prefill_layerwise_send_cache_thread(self):
"""
layerwise_send_cache_thread:
send cache to other instance
"""
try:
prefilled_step_idx_data = np.zeros(shape=[1], dtype=np.int32)
prefilled_layer_idx_data = np.zeros(shape=[1], dtype=np.int32)
prefilled_layer_name = f"splitwise_complete_prefilled_step_{self.dp_rank_id}.{self.gpu_id}"
prefilled_step_name = f"splitwise_complete_prefilled_step_{self.dp_rank_id}.{self.gpu_id}"
step_shm_value = IPCSignal(
name=f"splitwise_complete_prefilled_step_{self.dp_rank_id}",
array=prefilled_step_idx_data,
dtype=np.int32,
suffix=self.gpu_id,
create=not shared_memory_exists(prefilled_step_name),
)
layer_shm_value = IPCSignal(
name=f"splitwise_complete_prefilled_layer_{self.dp_rank_id}",
array=prefilled_layer_idx_data,
dtype=np.int32,
suffix=self.gpu_id,
create=not shared_memory_exists(prefilled_layer_name),
)
logger.info(f"splitwise_complete_prefilled_step_{self.dp_rank_id}, gpu_id: {self.gpu_id}")
step_shm_value.value[0] = -1
layer_shm_value.value[0] = -1
self.last_step_idx = -1
self.last_layer_idx = -1 # int32
while True:
cache_info = self.engine_worker_queue.get_cache_info()
if cache_info:
logger.debug(f"cache info {cache_info}")
for info in cache_info:
if info["request_id"] in self.cache_info:
self.cache_info[info["request_id"]].update(info)
current_info = self.cache_info[info["request_id"]]
if "dest_block_ids" in current_info and "src_block_ids" in current_info:
current_src_blocks = current_info["src_block_ids"][
-len(current_info["dest_block_ids"]) :
]
current_info["src_block_ids"] = current_src_blocks
current_info["current_layer_ids"] = 0
current_info["status"] = "init"
logger.info(f"start cache_infos: {current_info}")
self.cache_info[info["request_id"]] = current_info
self.last_step_idx = min(self.last_step_idx, current_info["current_id"])
else:
self.cache_info[info["request_id"]] = info
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
logger.info(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
if prefilled_layer_idx == self.num_layers - 1:
time.sleep(0.001)
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
if prefilled_step_idx == -1:
time.sleep(0.001)
continue
if not self.cache_info:
time.sleep(0.001)
continue
logger.debug(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
for req_id, item in list(self.cache_info.items()):
if "status" not in item:
continue
if "layer_idx" not in item:
item["layer_idx"] = 0
if item["status"] == "error":
del self.cache_info[req_id]
continue
if item["current_id"] > prefilled_step_idx:
continue
current_transfer_protocol = item["transfer_protocol"]
if item["transfer_protocol"] == "rdma":
target_ip = item["ip"]
target_id = int(item["rdma_ports"][self.rank])
status = self.messager[current_transfer_protocol].connect(target_ip, target_id)
if not status:
logger.error(f"connect to {target_ip}:{target_id} failed")
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "connect error")])
continue
elif item["transfer_protocol"] == "ipc":
target_ip = "0.0.0.0"
target_id = int(item["device_ids"][self.rank])
src_block_ids = paddle.to_tensor(item["src_block_ids"], dtype="int32", place="cpu")
dest_block_ids = paddle.to_tensor(item["dest_block_ids"], dtype="int32", place="cpu")
if item["current_id"] < prefilled_step_idx:
current_layer_idx = self.num_layers
else:
current_layer_idx = prefilled_layer_idx + 1
for layer_idx in range(item["layer_idx"], current_layer_idx):
tic = time.time()
return_code = self.messager[current_transfer_protocol].write_cache(
target_ip,
target_id,
src_block_ids,
dest_block_ids,
layer_idx,
)
if return_code != 0:
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "write cache error")])
logger.error(
f"write cache failed, layer_idx: {layer_idx}, "
f"req_id: {item['request_id']}, dest_ip: {target_ip}"
)
break
tok = time.time()
cost_time = tok - tic
block_num = len(src_block_ids)
avg_time_per_block = cost_time * 1000 / block_num # ms
send_cache_speed = block_num * self.block_bytes / 1073741824 / cost_time # GB/s
logger.debug(
f"finish write cache for a layer, {item['request_id']}, {layer_idx}"
f" {current_transfer_protocol}"
f"block_num: {block_num}, send_cache_speed(GB/s): {round(send_cache_speed, 5)},"
f"avg_time per block(ms): {round(avg_time_per_block, 5)}"
)
item["layer_idx"] = current_layer_idx
if item["layer_idx"] == self.num_layers:
if item["transfer_protocol"] == "ipc":
self.messager["ipc"].write_block_by_sync(target_id)
logger.info(f"finish write cache {item['request_id']}")
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "finished")])
logger.info(f"put write cache {item['request_id']}")
del self.cache_info[req_id]
self.last_step_idx = prefilled_step_idx
self.last_layer_idx = prefilled_layer_idx
except Exception as e:
logger.error(f"prefill layerwise send cache thread has exception: {e}, {str(traceback.format_exc())}")