mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			629 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			629 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from functools import partial
 | |
| from typing import Dict, Union
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.transformers.configuration_utils import PretrainedConfig
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| from fastdeploy.model_executor.graph_optimization.decorator import (
 | |
|     support_graph_optimization,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.activation import SiluAndMul
 | |
| from fastdeploy.model_executor.layers.attention.attention import Attention
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import (
 | |
|     MergedColumnParallelLinear,
 | |
|     QKVParallelLinear,
 | |
|     ReplicatedLinear,
 | |
|     RowParallelLinear,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.moe.moe import FusedMoE
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.model_executor.models.tp_utils import TensorSplitMode as tsm
 | |
| from fastdeploy.model_executor.models.utils import LayerIdPlaceholder as layerid
 | |
| from fastdeploy.model_executor.models.utils import WeightMeta
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MLP(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         intermediate_size: int,
 | |
|         prefix: str = "",
 | |
|         reduce_results: bool = True,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.nranks = fd_config.parallel_config.tensor_parallel_size
 | |
|         self.up_gate_proj = MergedColumnParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.up_gate_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=intermediate_size * 2,
 | |
|             with_bias=False,
 | |
|             activation=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|         self.down_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.down_proj",
 | |
|             input_size=intermediate_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|             with_bias=False,
 | |
|             reduce_results=reduce_results,
 | |
|         )
 | |
| 
 | |
|         self.act_fn = SiluAndMul(
 | |
|             fd_config=fd_config,
 | |
|             bias=None,
 | |
|             act_method=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.up_gate_proj.load_state_dict(state_dict)
 | |
|         self.down_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, hidden_states: paddle.Tensor):
 | |
|         gate_up_out = self.up_gate_proj(hidden_states)
 | |
|         act_out = self.act_fn(gate_up_out)
 | |
|         down_out = self.down_proj(act_out)
 | |
|         return down_out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoE(nn.Layer):
 | |
|     def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str) -> None:
 | |
|         super().__init__()
 | |
|         moe_quant_type = ""
 | |
|         if hasattr(fd_config.quant_config, "moe_quant_type"):
 | |
|             moe_quant_type = fd_config.quant_config.moe_quant_type
 | |
| 
 | |
|         if moe_quant_type == "w4a8":
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
 | |
|                 "down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
 | |
|             }
 | |
|         elif moe_quant_type == "w4w2":
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_super_scales_key": f"{prefix}.experts.{{}}.up_gate_proj.super_scales",
 | |
|                 "down_proj_expert_super_scales_key": f"{prefix}.experts.{{}}.down_proj.super_scales",
 | |
|                 "up_gate_proj_expert_code_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.code_scale",
 | |
|                 "down_proj_expert_code_scale_key": f"{prefix}.experts.{{}}.down_proj.code_scale",
 | |
|                 "up_gate_proj_expert_code_zp_key": f"{prefix}.experts.{{}}.up_gate_proj.code_zp",
 | |
|                 "down_proj_expert_code_zp_key": f"{prefix}.experts.{{}}.down_proj.code_zp",
 | |
|             }
 | |
|         elif moe_quant_type == "tensor_wise_fp8" or (
 | |
|             moe_quant_type == "block_wise_fp8" and fd_config.model_config.is_quantized
 | |
|         ):
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
 | |
|                 "down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
 | |
|             }
 | |
|         else:
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
 | |
|             }
 | |
| 
 | |
|         self.experts = FusedMoE(
 | |
|             fd_config=fd_config,
 | |
|             moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
 | |
|             num_experts=fd_config.model_config.moe_num_experts,
 | |
|             top_k=fd_config.model_config.moe_k,
 | |
|             layer_idx=layer_id,
 | |
|             weight_key_map=weight_key_map,
 | |
|         )
 | |
| 
 | |
|         self.gate = ReplicatedLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.gate",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.moe_num_experts,
 | |
|             with_bias=False,
 | |
|             skip_quant=True,
 | |
|             weight_dtype="float32",
 | |
|         )
 | |
| 
 | |
|         self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
 | |
|         if self.num_shared_experts > 0:
 | |
|             shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
 | |
|             self.shared_experts = Ernie4_5_MLP(
 | |
|                 fd_config=fd_config,
 | |
|                 intermediate_size=shared_experts_hidden_dim,
 | |
|                 prefix=f"{prefix}.shared_experts",
 | |
|             )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.gate.load_state_dict(state_dict)
 | |
|         self.experts.load_state_dict(state_dict)
 | |
|         if self.num_shared_experts > 0:
 | |
|             self.shared_experts.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, hidden_states: paddle.Tensor):
 | |
|         out = self.experts(hidden_states, self.gate)
 | |
|         if self.num_shared_experts > 0:
 | |
|             s_x = self.shared_experts(hidden_states)
 | |
|             out = out + s_x
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_Attention(nn.Layer):
 | |
|     def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.qkv_proj = QKVParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.qkv_proj",
 | |
|         )
 | |
| 
 | |
|         self.o_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.o_proj",
 | |
|             input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|         )
 | |
|         self.attn = Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=prefix,
 | |
|             use_neox_rotary_style=False,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.qkv_proj.load_state_dict(state_dict)
 | |
|         self.o_proj.load_state_dict(state_dict)
 | |
|         self.attn.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|     ):
 | |
|         qkv_out = self.qkv_proj(hidden_states)
 | |
| 
 | |
|         attn_out = self.attn(
 | |
|             qkv=qkv_out,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         output = self.o_proj(attn_out)
 | |
| 
 | |
|         return output
 | |
| 
 | |
| 
 | |
| class Ernie4_5_DecoderLayer(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         layer_id = int(prefix.split(sep=".")[-1])
 | |
| 
 | |
|         self.self_attn = Ernie4_5_Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=f"{prefix}.self_attn",
 | |
|         )
 | |
| 
 | |
|         if (
 | |
|             getattr(fd_config.model_config, "moe_num_experts", None) is not None
 | |
|             and layer_id >= fd_config.model_config.moe_layer_start_index
 | |
|         ):
 | |
|             self.mlp = Ernie4_5_MoE(
 | |
|                 fd_config=fd_config,
 | |
|                 layer_id=layer_id,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
|         else:
 | |
|             self.mlp = Ernie4_5_MLP(
 | |
|                 fd_config=fd_config,
 | |
|                 intermediate_size=fd_config.model_config.intermediate_size,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
| 
 | |
|         self.input_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.input_layernorm",
 | |
|         )
 | |
| 
 | |
|         self.post_attention_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.post_attention_layernorm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.self_attn.load_state_dict(state_dict)
 | |
|         self.mlp.load_state_dict(state_dict)
 | |
|         self.input_layernorm.load_state_dict(state_dict)
 | |
|         self.post_attention_layernorm.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         residual: paddle.Tensor = None,
 | |
|     ):
 | |
|         if residual is None:
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.input_layernorm(hidden_states)
 | |
|         else:
 | |
|             hidden_states, residual = self.input_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
| 
 | |
|         return hidden_states, residual
 | |
| 
 | |
| 
 | |
| @support_graph_optimization
 | |
| class Ernie4_5_Model(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Ernie4_5_Model class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_hidden_layers
 | |
|         fd_config.model_config.pretrained_config.prefix_name = "ernie"
 | |
| 
 | |
|         self.embed_tokens = VocabParallelEmbedding(
 | |
|             fd_config=fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype(),
 | |
|             prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
 | |
|         )
 | |
| 
 | |
|         self.layers = nn.LayerList(
 | |
|             [
 | |
|                 Ernie4_5_DecoderLayer(
 | |
|                     fd_config=fd_config,
 | |
|                     prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
 | |
|                 )
 | |
|                 for i in range(self.num_layers)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.embed_tokens.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
 | |
| 
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Ernie4_5_MoeForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Ernie4_5_MoeForCausalLM, self).__init__(fd_config)
 | |
|         self.fd_config = fd_config
 | |
|         self.ernie = Ernie4_5_Model(fd_config=fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
| 
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config=fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
|         self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         return "Ernie4_5_MoeForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray, paddle.Tensor]]):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.ernie.load_state_dict(state_dict)
 | |
|         if self.tie_word_embeddings:
 | |
|             if hasattr(self.lm_head, "linear"):
 | |
|                 self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))
 | |
|             else:  # ep
 | |
|                 self.lm_head.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))
 | |
|         else:
 | |
|             self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = paddle.cast(logits, paddle.float32)
 | |
|         logits[:, self.ori_vocab_size :] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def empty_input_forward(self):
 | |
|         """
 | |
|         empty_input_forward
 | |
|         """
 | |
|         fake_hidden_states = paddle.empty(
 | |
|             shape=[0, self.fd_config.model_config.hidden_size],
 | |
|             dtype=paddle.get_default_dtype(),
 | |
|         )
 | |
|         for i in range(
 | |
|             self.fd_config.model_config.moe_layer_start_index,
 | |
|             self.fd_config.model_config.num_hidden_layers,
 | |
|         ):
 | |
|             self.ernie.layers[i].mlp.expert(fake_hidden_states)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         hidden_states = self.ernie(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
| 
 | |
| class Ernie4_5_ForCausalLM(Ernie4_5_MoeForCausalLM):
 | |
|     """
 | |
|     Ernie4_5_ForCausalLM
 | |
|     """
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """
 | |
|         Model Architecture Name
 | |
|         """
 | |
|         return "Ernie4_5_ForCausalLM"
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoePretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Ernie4_5_MoePretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def arch_name(self):
 | |
|         return "Ernie4_5_MoeForCausalLM"
 | |
| 
 | |
|     weight_infos = [
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.qkv_proj.weight",
 | |
|             True,
 | |
|             tsm.GQA,
 | |
|         ),
 | |
|         WeightMeta(f".layers.{{{layerid.LAYER_ID}}}.self_attn.o_proj.weight", False),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.down_proj.weight", False),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.down_proj.weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.down_proj.weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(".embed_tokens.weight", False),
 | |
|         WeightMeta("lm_head.weight", True),
 | |
|         # quant tensorwise
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.qkv_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.GQA,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.o_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|     ]
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config: PretrainedConfig, is_split=True):
 | |
|         """
 | |
|         get_tensor_parallel_mappings
 | |
|         """
 | |
|         logger.info("erine inference model _get_tensor_parallel_mappings")
 | |
|         from fastdeploy.model_executor.models.tp_utils import (
 | |
|             build_expanded_keys,
 | |
|             has_prefix,
 | |
|             split_or_merge_func_v1,
 | |
|         )
 | |
| 
 | |
|         fn = split_or_merge_func_v1(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|             num_key_value_heads=config.num_key_value_heads,
 | |
|             head_dim=config.head_dim,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers, moe_num_experts, moe_layer_start_index, prefix_name):
 | |
|             base_actions = {}
 | |
|             weight_infos = cls.weight_infos
 | |
|             for weight_name, is_column, extra in weight_infos:
 | |
|                 params = {
 | |
|                     "is_column": is_column,
 | |
|                     **({extra.value: True} if extra else {}),
 | |
|                 }
 | |
| 
 | |
|                 if "lm_head.weight" in weight_name:
 | |
|                     key = weight_name
 | |
|                 elif not has_prefix(prefix_name, weight_name):
 | |
|                     key = f"{prefix_name}{weight_name}"
 | |
|                 else:
 | |
|                     key = weight_name
 | |
|                 base_actions[key] = partial(fn, **params)
 | |
|             final_actions = {}
 | |
|             start_layer = moe_layer_start_index if moe_layer_start_index > 0 else num_layers
 | |
|             final_actions = build_expanded_keys(base_actions, num_layers, start_layer, moe_num_experts)
 | |
|             return final_actions
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(
 | |
|             config.num_hidden_layers,
 | |
|             getattr(config, "moe_num_experts", 0),
 | |
|             getattr(config, "moe_layer_start_index", -1),
 | |
|             config.prefix_name,
 | |
|         )
 | |
|         return mappings
 | |
| 
 | |
| 
 | |
| class Ernie4_5_PretrainedModel(Ernie4_5_MoePretrainedModel):
 | |
|     """
 | |
|     Ernie4_5_PretrainedModel
 | |
|     """
 | |
| 
 | |
|     @classmethod
 | |
|     def arch_name(self):
 | |
|         """
 | |
|         Model Architecture Name
 | |
|         """
 | |
|         return "Ernie4_5_ForCausalLM"
 | 
