mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			290 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from typing import TYPE_CHECKING
 | |
| 
 | |
| import paddle
 | |
| from paddle.nn.functional import scaled_dot_product_attention
 | |
| 
 | |
| from fastdeploy.model_executor.layers.attention.base_attention_backend import (
 | |
|     AttentionBackend,
 | |
| )
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| 
 | |
| 
 | |
| class PaddleNativeAttnBackend(AttentionBackend):
 | |
|     """
 | |
|     The backend class that uses paddle native attention implementation.
 | |
|     Which is used only for testing purpose.
 | |
|     """
 | |
| 
 | |
|     def __init__(self) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|     def init_attention_metadata(self, forward_meta: ForwardMeta):
 | |
|         """Init the metadata for a forward pass."""
 | |
|         pass
 | |
| 
 | |
|     def _run_sdpa_forward_extend(
 | |
|         self,
 | |
|         query: paddle.Tensor,
 | |
|         output: paddle.Tensor,
 | |
|         k_cache: paddle.Tensor,
 | |
|         v_cache: paddle.Tensor,
 | |
|         req_to_token: paddle.Tensor,
 | |
|         req_pool_indices: paddle.Tensor,
 | |
|         seq_lens: paddle.Tensor,
 | |
|         extend_prefix_lens: paddle.Tensor,
 | |
|         extend_seq_lens: paddle.Tensor,
 | |
|         causal: bool = False,
 | |
|     ) -> paddle.Tensor:
 | |
|         """Run the extend forward by using paddle native sdpa op.
 | |
| 
 | |
|         Args:
 | |
|             query: [num_tokens, num_heads, head_size]
 | |
|             output: [num_tokens, num_heads, head_size]
 | |
|             k_cache: [max_total_num_tokens, num_heads, head_size]
 | |
|             v_cache: [max_total_num_tokens, num_heads, head_size]
 | |
|             req_to_token: [max_num_reqs, max_context_len]
 | |
|             req_pool_indices: [num_seqs]
 | |
|             seq_lens: [num_seqs]
 | |
|             extend_prefix_lens: [num_seqs]
 | |
|             extend_seq_lens: [num_seqs]
 | |
|             causal: bool
 | |
| 
 | |
|         Returns:
 | |
|             output: [num_tokens, num_heads, head_size]
 | |
|         """
 | |
| 
 | |
|         assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
 | |
|         assert seq_lens.shape[0] == extend_seq_lens.shape[0]
 | |
| 
 | |
|         # [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
 | |
|         # query = query.movedim(0, query.dim() - 2) =>
 | |
|         query = paddle.transpose(query, perm=[1, 0, 2])
 | |
| 
 | |
|         start_q, start_kv = 0, 0
 | |
|         for seq_idx in range(seq_lens.shape[0]):
 | |
|             # TODO: this loop process a sequence per iter, this is inefficient.
 | |
|             # Need optimize the performance later.
 | |
| 
 | |
|             extend_seq_len_q = extend_seq_lens[seq_idx]
 | |
|             prefill_seq_len_q = extend_prefix_lens[seq_idx]
 | |
| 
 | |
|             seq_len_kv = seq_lens[seq_idx]
 | |
|             end_q = start_q + extend_seq_len_q
 | |
|             end_kv = start_kv + seq_len_kv
 | |
| 
 | |
|             per_req_query = query[:, start_q:end_q, :]
 | |
|             per_req_query_redudant = paddle.empty(
 | |
|                 (per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
 | |
|                 dtype=per_req_query.dtype,
 | |
|             )
 | |
| 
 | |
|             per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
 | |
| 
 | |
|             # get key and value from cache. per_req_tokens contains the kv cache
 | |
|             # index for each token in the sequence.
 | |
|             req_pool_idx = req_pool_indices[seq_idx]
 | |
|             per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
 | |
|             # per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
 | |
|             # per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
 | |
|             per_req_key = k_cache[per_req_tokens].transpose([query.dim() - 2, 0])
 | |
|             per_req_value = v_cache[per_req_tokens].transpose([query.dim() - 2, 0])
 | |
| 
 | |
|             per_req_out_redudant = (
 | |
|                 scaled_dot_product_attention(
 | |
|                     per_req_query_redudant.unsqueeze(0),
 | |
|                     per_req_key.unsqueeze(0),
 | |
|                     per_req_value.unsqueeze(0),
 | |
|                     is_causal=causal,
 | |
|                 )
 | |
|                 .squeeze(0)
 | |
|                 .transpose([query.dim() - 2, 0])
 | |
|             )
 | |
|             output[start_q:end_q, :, :] = per_req_out_redudant[prefill_seq_len_q:, :, :]
 | |
|             start_q, start_kv = end_q, end_kv
 | |
|         return output
 | |
| 
 | |
|     def _scaled_dot_product_attention(
 | |
|         self,
 | |
|         query: paddle.Tensor,
 | |
|         key: paddle.Tensor,
 | |
|         value: paddle.Tensor,
 | |
|         is_causal: bool = False,
 | |
|     ) -> paddle.Tensor:
 | |
|         """Paddle implementation of scaled dot-product attention."""
 | |
|         # query, key, value shape: [batch_size, num_heads, seq_len, head_size]
 | |
|         d_k = query.shape[-1]
 | |
|         scores = paddle.matmul(query, key.transpose([0, 1, 3, 2]))  # QK^T
 | |
| 
 | |
|         scores = scores / paddle.sqrt(paddle.to_tensor(d_k, dtype=scores.dtype))
 | |
|         if is_causal:
 | |
|             # Apply causal mask
 | |
|             q_len, k_len = scores.shape[-2], scores.shape[-1]
 | |
|             mask = paddle.triu(paddle.ones((q_len, k_len)) * -1e4, diagonal=1)
 | |
|             scores += mask.unsqueeze(0).unsqueeze(0)
 | |
| 
 | |
|         attn_weights = paddle.nn.functional.softmax(scores, axis=-1)
 | |
|         output = paddle.matmul(attn_weights, value)
 | |
|         return output
 | |
| 
 | |
|     def _run_sdpa_forward_decode(
 | |
|         self,
 | |
|         query: paddle.Tensor,
 | |
|         output: paddle.Tensor,
 | |
|         k_cache: paddle.Tensor,
 | |
|         v_cache: paddle.Tensor,
 | |
|         req_to_token: paddle.Tensor,
 | |
|         req_pool_indices: paddle.Tensor,
 | |
|         seq_lens: paddle.Tensor,
 | |
|         causal: bool = False,
 | |
|     ) -> paddle.Tensor:
 | |
|         """Run the decode forward by using paddle native sdpa op.
 | |
| 
 | |
|         Args:
 | |
|             query: [num_tokens, num_heads, head_size]
 | |
|             output: [num_tokens, num_heads, head_size]
 | |
|             k_cache: [max_total_num_tokens, num_heads, head_size]
 | |
|             v_cache: [max_total_num_tokens, num_heads, head_size]
 | |
|             req_to_token: [max_num_reqs, max_context_len]
 | |
|             req_pool_indices: [num_seqs]
 | |
|             seq_lens: [num_seqs]
 | |
|             causal: bool
 | |
| 
 | |
|         Returns:
 | |
|             output: [num_tokens, num_heads, head_size]
 | |
|         """
 | |
| 
 | |
|         # [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
 | |
|         query = query.transpose([1, 0, 2])
 | |
| 
 | |
|         start_q, start_kv = 0, 0
 | |
|         for seq_idx in range(seq_lens.shape[0]):
 | |
|             # TODO: this loop process a sequence per iter, this is inefficient.
 | |
|             # Need optimize the performance later.
 | |
| 
 | |
|             seq_len_q = 1
 | |
|             seq_len_kv = seq_lens[seq_idx]
 | |
|             end_q = start_q + seq_len_q
 | |
|             end_kv = start_kv + seq_len_kv
 | |
| 
 | |
|             per_req_query = query[:, start_q:end_q, :]
 | |
| 
 | |
|             # get key and value from cache. per_req_tokens contains the kv cache
 | |
|             # index for each token in the sequence.
 | |
|             req_pool_idx = req_pool_indices[seq_idx]
 | |
|             per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
 | |
| 
 | |
|             # [seq_len_kv, num_heads, head_size] -> [num_heads, seq_len_kv, head_size]
 | |
|             per_req_key = k_cache[per_req_tokens].transpose([query.dim() - 2, 0])
 | |
|             per_req_value = v_cache[per_req_tokens].transpose([query.dim() - 2, 0])
 | |
| 
 | |
|             per_req_out = (
 | |
|                 self._scaled_dot_product_attention(
 | |
|                     per_req_query.unsqueeze(0),
 | |
|                     per_req_key.unsqueeze(0),
 | |
|                     per_req_value.unsqueeze(0),
 | |
|                     is_causal=causal,
 | |
|                 )
 | |
|                 .squeeze(0)
 | |
|                 .transpose([query.dim() - 2, 0])
 | |
|             )
 | |
|             output[start_q:end_q, :, :] = per_req_out
 | |
|             start_q, start_kv = end_q, end_kv
 | |
| 
 | |
|         return output
 | |
| 
 | |
|     def forward_extend(
 | |
|         self,
 | |
|         q: paddle.Tensor,
 | |
|         k: paddle.Tensor,
 | |
|         v: paddle.Tensor,
 | |
|         layer: paddle.nn.Layer,
 | |
|         forward_meta: ForwardMeta,
 | |
|         save_kv_cache: bool = True,
 | |
|     ) -> paddle.Tensor:
 | |
|         """
 | |
|         Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
 | |
|         """
 | |
|         if layer.qk_head_dim != layer.v_head_dim:
 | |
|             o = q.new_empty((q.shape[0], layer.self.num_heads * layer.v_head_dim))
 | |
|         else:
 | |
|             o = paddle.empty_like(q)
 | |
| 
 | |
|         if save_kv_cache:
 | |
|             forward_meta.token_to_kv_pool.set_kv_buffer(layer, forward_meta.out_cache_loc, k, v)
 | |
| 
 | |
|         q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
 | |
|         o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
 | |
| 
 | |
|         causal = True
 | |
| 
 | |
|         self._run_sdpa_forward_extend(
 | |
|             q_,
 | |
|             o_,
 | |
|             forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
 | |
|             forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
 | |
|             forward_meta.req_to_token_pool.req_to_token,
 | |
|             forward_meta.req_pool_indices,
 | |
|             forward_meta.seq_lens,
 | |
|             forward_meta.extend_prefix_lens,
 | |
|             forward_meta.extend_seq_lens,
 | |
|             causal=causal,
 | |
|         )
 | |
|         return o
 | |
| 
 | |
|     def forward_decode(
 | |
|         self,
 | |
|         q: paddle.Tensor,
 | |
|         k: paddle.Tensor,
 | |
|         v: paddle.Tensor,
 | |
|         layer: paddle.nn.Layer,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ) -> paddle.Tensor:
 | |
|         """
 | |
|         Run the decoding attention forward by using paddle native sdpa op.
 | |
|         """
 | |
|         q = q.reshape([-1, layer.self.num_heads * layer.qk_head_dim])
 | |
| 
 | |
|         if layer.qk_head_dim != layer.v_head_dim:
 | |
|             o = q.new_empty((q.shape[0], layer.self.num_heads * layer.v_head_dim))
 | |
|         else:
 | |
|             o = paddle.empty_like(q)
 | |
| 
 | |
|         forward_meta.token_to_kv_pool.set_kv_buffer(layer, forward_meta.out_cache_loc, k, v)
 | |
| 
 | |
|         q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
 | |
|         o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
 | |
| 
 | |
|         self._run_sdpa_forward_decode(
 | |
|             q_,
 | |
|             o_,
 | |
|             forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
 | |
|             forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
 | |
|             forward_meta.req_to_token_pool.req_to_token,
 | |
|             forward_meta.req_pool_indices,
 | |
|             forward_meta.seq_lens,
 | |
|             causal=False,
 | |
|         )
 | |
| 
 | |
|         return o
 | 
