Files
FastDeploy/csrc/fastdeploy/vision/visualize/matting_alpha.cc
2022-08-10 02:52:36 +00:00

120 lines
4.6 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef ENABLE_VISION_VISUALIZE
#include "fastdeploy/vision/visualize/visualize.h"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
namespace fastdeploy {
namespace vision {
static void RemoveSmallConnectedArea(cv::Mat* alpha_pred,
float threshold = 0.05f) {
// 移除小的联通区域和噪点 开闭合形态学处理
// 假设输入的是透明度alpha, 值域(0.,1.)
cv::Mat gray, binary;
(*alpha_pred).convertTo(gray, CV_8UC1, 255.f);
// 255 * 0.05 ~ 13
unsigned int binary_threshold = static_cast<unsigned int>(255.f * threshold);
cv::threshold(gray, binary, binary_threshold, 255, cv::THRESH_BINARY);
// morphologyEx with OPEN operation to remove noise first.
auto kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3, 3),
cv::Point(-1, -1));
cv::morphologyEx(binary, binary, cv::MORPH_OPEN, kernel);
// Computationally connected domain
cv::Mat labels = cv::Mat::zeros((*alpha_pred).size(), CV_32S);
cv::Mat stats, centroids;
int num_labels =
cv::connectedComponentsWithStats(binary, labels, stats, centroids, 8, 4);
if (num_labels <= 1) {
// no noise, skip.
return;
}
// find max connected area, 0 is background
int max_connected_id = 1; // 1,2,...
int max_connected_area = stats.at<int>(max_connected_id, cv::CC_STAT_AREA);
for (int i = 1; i < num_labels; ++i) {
int tmp_connected_area = stats.at<int>(i, cv::CC_STAT_AREA);
if (tmp_connected_area > max_connected_area) {
max_connected_area = tmp_connected_area;
max_connected_id = i;
}
}
const int h = (*alpha_pred).rows;
const int w = (*alpha_pred).cols;
// remove small connected area.
for (int i = 0; i < h; ++i) {
int* label_row_ptr = labels.ptr<int>(i);
float* alpha_row_ptr = (*alpha_pred).ptr<float>(i);
for (int j = 0; j < w; ++j) {
if (label_row_ptr[j] != max_connected_id) alpha_row_ptr[j] = 0.f;
}
}
}
cv::Mat Visualize::VisMattingAlpha(const cv::Mat& im,
const MattingResult& result,
bool remove_small_connected_area) {
// 只可视化alphafgr(前景)本身就是一张图 不需要可视化
FDASSERT((!im.empty()), "im can't be empty!");
FDASSERT((im.channels() == 3), "Only support 3 channels mat!");
auto vis_img = im.clone();
int out_h = static_cast<int>(result.shape[0]);
int out_w = static_cast<int>(result.shape[1]);
int height = im.rows;
int width = im.cols;
// alpha to cv::Mat && 避免resize等操作修改外部数据
std::vector<float> alpha_copy;
alpha_copy.assign(result.alpha.begin(), result.alpha.end());
float* alpha_ptr = static_cast<float*>(alpha_copy.data());
cv::Mat alpha(out_h, out_w, CV_32FC1, alpha_ptr);
if (remove_small_connected_area) {
RemoveSmallConnectedArea(&alpha, 0.05f);
}
if ((out_h != height) || (out_w != width)) {
cv::resize(alpha, alpha, cv::Size(width, height));
}
if ((vis_img).type() != CV_8UC3) {
(vis_img).convertTo((vis_img), CV_8UC3);
}
uchar* vis_data = static_cast<uchar*>(vis_img.data);
uchar* im_data = static_cast<uchar*>(im.data);
float* alpha_data = reinterpret_cast<float*>(alpha.data);
for (size_t i = 0; i < height; ++i) {
for (size_t j = 0; j < width; ++j) {
float alpha_val = alpha_data[i * width + j];
vis_data[i * width * 3 + j * 3 + 0] = cv::saturate_cast<uchar>(
static_cast<float>(im_data[i * width * 3 + j * 3 + 0]) * alpha_val +
(1.f - alpha_val) * 153.f);
vis_data[i * width * 3 + j * 3 + 1] = cv::saturate_cast<uchar>(
static_cast<float>(im_data[i * width * 3 + j * 3 + 1]) * alpha_val +
(1.f - alpha_val) * 255.f);
vis_data[i * width * 3 + j * 3 + 2] = cv::saturate_cast<uchar>(
static_cast<float>(im_data[i * width * 3 + j * 3 + 2]) * alpha_val +
(1.f - alpha_val) * 120.f);
}
}
return vis_img;
}
} // namespace vision
} // namespace fastdeploy
#endif